In hybrid AC/DC Microgrid, the tightly regulated loads could be regarded as constant power loads (CPLs), usually inducing negative impedance instability problems. This paper investigates large signal stability of hybrid AC/DC microgrid in grid-connected mode based on mixed potential theory, and the characteristics of CPLs are considered in the storage system charging and discharging mode. Firstly, the entire system is converted from abc frame to dq rotating frame. Then the mixed potential models are built, and large signal stability criteria are derived. The obtained criteria interpret relationships among the maximum power of the CPLs, the capacitance, the inductance, the control parameter kip of the current inner loop and the control parameter kvp of the voltage outer loop. When the storage system changes from charging to discharging mode, the maximum power of the CPLs that the system can support would increase significantly. Finally, simulation results are used to verify the validity of the obtained criteria.
刘欣博, 孙晓溪, 宋晓通. 带恒功率负载的交直流混合微电网系统大信号稳定性分析[J]. 电工技术学报, 2021, 36(zk1): 115-125.
Liu Xinbo, Sun Xiaoxi, Song Xiaotong. Large-Disturbance Stability Analysis of Hybrid AC/DC Microgrid with Constant Power Loads. Transactions of China Electrotechnical Society, 2021, 36(zk1): 115-125.
[1] 赵卓立, 杨苹, 郑成立, 等. 微电网动态稳定性研究述评[J]. 电工技术学报, 2017, 32(10): 111-122.
Zhao Zhuoli, Yang Ping, Zheng Chengli, et al.Review of studies on dynamic stability of micro grid[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 111-122.
[2] 韦李军, 黄萌, 孙建军, 等. 带恒功率负载的光伏-储能混合发电系统非线性行为分析[J]. 电工技术学报, 2017, 32(7): 128-137.
Wei Lijun, Huang Meng, Sun Jianjun, et al.Non- linear behavior analysis of photovoltaic and energy storage hybrid power generation system with constant power load[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 128-137.
[3] Molinas M, Moltoni D, Fascendini G, et al.Constant power loads in AC distribution systems: an investi- gation of stability[C]//2008 IEEE International Sym- posium on Industrial Electronics, Cambridge, 2008: 1531-1536.
[4] Middlebrook R D.Input filter considerations in design and application of switching regulators[C]// IEEE Industry Applications Society Annual Meeting, Chicago, Lllionis, 1976: 366-382.
[5] Wildrick C M, Lee F C.A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Elec- tronics, 1995, 10(3): 280-285.
[6] Teng Long, Wang Youyi, Cai Wenjian, et al.Robust fuzzy model predictive control of discrete-time Takagi- Sugeno systems with nonlinear local models[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 2915-2925.
[7] Kim H J, Kang S W, Seo G S, et al.Large-signal stability analysis of DC power system with shunt active damper[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6270-6280.
[8] Brayton R K, Moser J K.A theory of nonlinear networks-I[J]. Quarterly of Applied Mathematics, 1964, 22: 1-33.
[9] 王聪聪. 交直流微网AC/DC双向功率变换器控制策略研究[D]. 株洲: 湖南工业大学, 2018.
[10] 邱晔. 交直流混合型微电网并网运行控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[11] 刘欣博, 高卓. 考虑恒功率负载与储能单元动态特性的直流微电网系统大信号稳定性分析[J]. 电工技术学报, 2019, 34(增刊1): 292-299.
Liu Xinbo, Gao Zhuo.Large signal stability analysis of hybrid AC/DC microgrid system with constant power load[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 292-299.
[12] Marx D, Magne P, Nahid-Mobarakeh B, et al.Large signal stability analysis tools in DC power systems with constant power loads and variable power loads-a review[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 1773-1787.
[13] Gupta A, Doolla S, Chatterjee K.Hybrid AC-DC microgrid: systematic evaluation of control strate- gies[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3830-3843.
[14] Yang Han, Pan Shen, Xin Zhao, et al.Control strategies for islanded microgrid using enhanced hierarchical control structure with multiple current- loop damping schemes[J]. IEEE Transactions on Smart Grid, 2017, 8(3): 1139-1153.
[15] Singh S, Fulwani D.On design of a robust controller to mitigate CPL effect-a DC micro-grid application[C]// 2014 IEEE International Conference on Industrial Technology (ICIT), Busan, Korea (South), 2014: 448-454.
[16] 朱永强, 张泉, 刘康, 等. 交直流混合微电网分段协调控制策略[J]. 电力系统自动化, 2020, 44(6): 52-64.
Zhu Yongqiang, Zhang Quan, Liu Kang, et al.Sectional coordinated control strategy for AC/DC hybrid microgrid[J]. Automation of Electric Power Systems, 2020, 44(6): 52-64.
[17] 张雨曼, 刘学智, 严正, 等. 光伏-储能-热电联产综合能源系统分解协调优化运行研究[J]. 电工技术学报, 2020, 35(11): 2372-2386.
Zhang Yuman, Liu Xuezhi, Yan Zheng, et al.Research on decomposition, coordination and optimal operation of integrated energy system of photovoltaic- energy storage-combined heat and power[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(11): 2372-2386.
[18] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908.
Li Xinran, Cui Xiwen, Huang Jiyuan, et al.Adaptive control strategy of battery energy storage power supply participating in primary frequency modulation of power grid[J]. Transactions of China Electro- technical Society, 2019, 34(18): 3897-3908.
[19] 涂春鸣, 黄红, 兰征, 等. 微电网中电力电子变压器与储能的协调控制策略[J]. 电工技术学报, 2019, 34(12): 2627-2636.
Tu Chunming, Huang Hong, Lan Zheng, et al.Coordinated control strategy of power electronic transformer and energy storage in micro grid[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2627-2636.
[20] 张兴. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2017.