Capacity Optimization Configuration of Hybrid Energy Storage System for Long Steep Slope of High-Speed Railway
Li Xin1, Lu Jingtao1, Xiao Linrun2, Jin Zhongfu3
1. School of New Energy and Power Engineering Lanzhou Jiaotong University Lanzhou 730070 China; 2. School of Automatization and Electric Engineering Lanzhou Jiaotong University Lanzhou 730070 China; 3. China Railway First Survey and Design Institute Group Co. Ltd Xi'an 710043 China
Abstract:High-speed railway trains will generate a large amount of regenerative braking energy and send it back to the traction network when they pass through the long ramp section, which will cause the voltage uplift of the traction network, harm traffic safety, and even cause economic losses to the railway enterprises. If this energy is reasonably recycled, it will be beneficial to reduce the energy consumption of high-speed rail, low-carbon transportation, energy conservation, and emission reduction, and achieve the ‘3060’ dual carbon target, which is more conducive to train safety. Studies have shown that it is a good method to recover regenerative braking energy by ground hybrid energy storage system, but it needs to be reasonably configured. Therefore, this paper presents a segmented configuration scheme and capacity optimization model for a hybrid energy storage system. The improved simulated annealing algorithm based on Levy flight (LESA) is used to optimize the capacity of the hybrid energy storage system on a long ramp of a high-speed railway. Firstly, the characteristics of regenerative braking power are analyzed from each and all day respectively. On this basis, considering the capacity requirements of the energy storage system, the energy is combined with the same type in chronological order to form the action segment, analyze the feasibility of the utilization of regenerative braking energy, and determine the recovery range. Accordingly, considering the respective characteristics of different media of the hybrid energy storage system, the energy recovery method with the threshold Pth as the boundary condition is formulated, the segmented configuration scheme of the hybrid energy storage system is established, and the economic indicators are calculated. Secondly, in the aspect of optimization algorithm, because the traditional simulated annealing algorithm (SA) has low efficiency, Levy flight is used to generate the initial solution, and it is constantly memorized and updated in the process of algorithm solution. An improved simulated annealing algorithm based on Levy flight (LESA) is proposed. This method can reduce the number of times to enter the Metropolis criterion, and is closer to the optimal solution under a limited number of iterations, improving the efficiency of the algorithm. Finally, according to the actual operation data of a long steep slope of Xi'an-Chengdu high-speed railway, two kinds of configuration schemes are analyzed. The analysis results of regenerative braking power show that the single braking power is low and has small fluctuation. Moreover, in the analysis of the whole day conditions, the power curve has obvious stratification, and the energy of the low-power section is more enriched than the high-power section. In the feasibility analysis of regenerative braking energy utilization, a total of 36 braking sections and 36 traction sections were obtained. The first 35 times were included in the configuration calculation range considering the discharge demand. According to the actual operation data, through the given configuration scheme, optimization model, and LESA algorithm, the results of optimal configuration are obtained: Scheme 1 of recovering low-power energy with battery, the daily cumulative recovery power reaches 1 1673.48 kW·h; scheme 2 of recovering low-power energy with supercapacitors has a daily cumulative recovery of 9 191.15 kW·h. The configuration results obtained by the LESA algorithm are better than the 11 290.35 kW·h and 9 131.24 kW·h calculated by the SA algorithm. The improved simulated annealing algorithm based on the Levy flight presented in this paper has better and more stable results than the traditional SA under the finite number of iterations, which solves the solving efficiency problem of the original algorithm to a certain extent. After optimized configuration, the hybrid energy storage system can recover a large amount of regenerative braking energy during its life, and the recovered electricity accounts for 16.3 % of the traction power consumption, which has a high recycling significance.
李欣, 卢景涛, 肖林润, 靳忠福. 高速铁路列车长大坡道混合储能系统容量优化配置[J]. 电工技术学报, 2023, 38(20): 5645-5660.
Li Xin, Lu Jingtao, Xiao Linrun, Jin Zhongfu. Capacity Optimization Configuration of Hybrid Energy Storage System for Long Steep Slope of High-Speed Railway. Transactions of China Electrotechnical Society, 2023, 38(20): 5645-5660.
[1] 耿安琪, 胡海涛, 张育维, 等. 基于阶梯能量管理的电气化铁路混合储能系统控制策略[J]. 电工技术学报, 2021, 36(23): 4916-4925. Geng Anqi, Hu Haitao, Zhang Yuwei, et al.Control strategy of hybrid energy storage system for elec- trified railway based on increment energy manage- ment[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4916-4925. [2] 胡海涛, 陈俊宇, 葛银波, 等. 高速铁路再生制动能量储存与利用技术研究[J]. 中国电机工程学报, 2020, 40(1): 246-256, 391. Hu Haitao, Chen Junyu, Ge Yinbo, et al.Research on regenerative braking energy storage and utilization technology for high-speed railways[J]. Proceedings of the CSEE, 2020, 40(1): 246-256, 391. [3] 李明林. 电气化铁路再生制动能量利用系统研究[D]. 成都: 西南交通大学, 2020. [4] 刘华伟, 耿安琪, 何正友, 等. 重载铁路再生制动能量利用方案研究[J]. 电气工程学报, 2021, 16(1): 157-165. Liu Huawei, Geng Anqi, He Zhengyou, et al.Research on energy utilization scheme of regenerative braking for heavy haul railway[J]. Journal of Elec- trical Engineering, 2021, 16(1): 157-165. [5] 袁佳歆, 曲锴, 郑先锋, 等. 高速铁路混合储能系统容量优化研究[J]. 电工技术学报, 2021, 36(19): 4161-4169, 4182. Yuan Jiaxin, Qu Kai, Zheng Xianfeng, et al.Opti- mizing research on hybrid energy storage system of high speed railway[J]. Transactions of China Elec- trotechnical Society, 2021, 36(19): 4161-4169, 4182. [6] 邓文丽, 戴朝华, 韩春白雪, 等. 计及再生制动能量回收和电能质量改善的铁路背靠背混合储能系统及其控制方法[J]. 中国电机工程学报, 2019, 39(10): 2914-2924. Deng Wenli, Dai Chaohua, Han Chunbaixue, et al.Back-to-back hybrid energy storage system of electric railway and its control method considering regen- erative braking energy recovery and power quality improvement[J]. Proceedings of the CSEE, 2019, 39(10): 2914-2924. [7] 何棒棒, 高志宣, 马超. 一种基于储能系统的混合铁路功率调节器及其控制策略[J]. 电工技术学报, 2021, 36(23): 4905-4915. He Bangbang, Gao Zhixuan, Ma Chao.A hybrid railway power conditioner based on energy storage system and its control strategy[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4905-4915. [8] 李炳元, 潘保田, 程维明, 等. 中国地貌区划新论[J]. 地理学报, 2013, 68(3): 291-306. Li Bingyuan, Pan Baotian, Cheng Weiming, et al.Research on geomorphological regionalization of China[J]. Acta Geographica Sinica, 2013, 68(3): 291-306. [9] 莫志松. 西部高原山区高速铁路列控系统方案探讨[J]. 中国铁路, 2021(5): 77-83. Mo Zhisong.Discussion on train control system scheme of high speed railway in mountainous area of western plateau[J]. China Railway, 2021(5): 77-83. [10] 邓云川, 林宗良. 川藏铁路电气化工程面临的挑战和对策思考[J]. 电气化铁道, 2019, 30(增刊1): 5-11, 15. Deng Yunchuan, Lin Zongliang.Thoughts on challenges faced by Sichuan-Tibet railway electrification project and its solutions[J]. Electric Railway, 2019, 30(S1): 5-11, 15. [11] 章鹏. 超长大坡道条件下西成高铁节能优化研究[D]. 成都: 西南交通大学, 2020. [12] 乔忠伟. 西成高铁列车再生对供电系统影响及解决方案研究[D]. 西安: 西安理工大学, 2020. [13] 吕顺凯. 电气化铁路再生制动能量利用装置节能检验与计量方案研究[J]. 铁道技术监督, 2021, 49(3): 21-25. Lü Shunkai.Research on energy-saving inspection and metrology scheme of regenerative braking energy utilization device for electrified railway[J]. Railway Quality Control, 2021, 49(3): 21-25. [14] 黄文勋. 复杂艰险山区列车再生制动对牵引网电压影响及相关抑制措施研究[J]. 铁道标准设计, 2020, 64(10): 143-147. Huang Wenxun.Study on voltage rise of traction network and related restraining measures under the condition of train regenerative braking in complex and difficult mountainous area[J]. Railway Standard Design, 2020, 64(10): 143-147. [15] 杨创, 冯鉴, 李天成, 等. 基于Simulink的高速铁路长大坡道储能系统设计[J]. 机电工程技术, 2020, 49(9): 151-153. Yang Chuang, Feng Jian, Li Tiancheng, et al.Design of energy storage system for long steep grade of high speed railway based on Simulink[J]. Mechanical & Electrical Engineering Technology, 2020, 49(9): 151-153. [16] 张民, 何正友, 胡海涛, 等. 高速动车组再生制动下网侧电流谐波特性分析[J]. 电网技术, 2012, 36(9): 257-261. Zhang Min, He Zhengyou, Hu Haitao, et al.Analysis on harmonic characteristics of grid-side current during regenerative braking of high speed train[J]. Power System Technology, 2012, 36(9): 257-261. [17] 周琪琛, 雷杰, 杨磊. 高速列车再生制动对电能质量的影响[J]. 甘肃科技, 2019, 35(9): 53-55, 35. Zhou Qichen, Lei Jie, Yang Lei.Influence of regenerative braking on power quality of high-speed train[J]. Gansu Science and Technology, 2019, 35(9): 53-55, 35. [18] 黄文龙, 胡海涛, 陈俊宇, 等. 枢纽型牵引变电所再生制动能量利用系统能量管理及控制策略[J]. 电工技术学报, 2021, 36(3): 588-598. Huang Wenlong, Hu Haitao, Chen Junyu, et al.Energy management and control strategy of regen- erative braking energy utilization system in hub traction substation[J]. Transactions of China Elec- trotechnical Society, 2021, 36(3): 588-598. [19] Ceraolo M, Lutzemberger G, Meli E, et al.Energy storage systems to exploit regenerative braking in DC railway systems: different approaches to improve efficiency of modern high-speed trains[J]. Journal of Energy Storage, 2018, 16: 269-279. [20] 赵乐. 基于再生制动的地铁列车时刻表优化模型与算法研究[D]. 北京: 北京交通大学, 2014. [21] Yuksel T.A survey on energy-efficient timetable optimization model based on the utilization of regenerative braking[C]//International Symposium on Multidisciplinary Studies and Innovative Techno- logies, Kizilcahamam, 2018: 1-6. [22] 陈启鑫, 房曦晨, 郭鸿业, 等. 储能参与电力市场机制: 现状与展望[J]. 电力系统自动化, 2021, 45(16): 14-28. Chen Qixin, Fang Xichen, Guo Hongye, et al.participation mechanism of energy storage in elec- tricity market: status quo and prospect[J]. Automation of Electric Power Systems, 2021, 45(16): 14-28. [23] 安秋颖. 城市轨道交通供电系统再生制动能量回收装置节能影响因素分析[J]. 铁道车辆, 2021, 59(1): 31-34, 116. An Qiuying.Analysis of affecting factors of energy saving of regenerative braking energy recovery device in power supply system for urban rail transit[J]. Rolling Stock, 2021, 59(1): 31-34, 116. [24] 毕文骏. 基于飞轮储能的地铁再生制动能量利用研究[D]. 成都: 西南交通大学, 2016. [25] 申宁, 石广保, 陈亮. 储能型再生制动能量吸收装置在青岛地铁的应用[J]. 自动化应用, 2020(9): 25-27. Shen Ning, Shi Guangbao, Chen Liang.Application of energy storage type regenerative braking energy absorber in Qingdao metro[J]. Automation Appli- cation, 2020(9): 25-27. [26] Kaleybar H J, Brenna M, Foiadelli F, et al.Regen- erative braking energy and power quality analysis in 2×25 kV high-speed railway lines operating with 4QC locomotives[C]//Power Electronics, Drive Systems, and Technologies Conference, Tehran, 2020: 1-6. [27] 贺启甫. 电气化铁路再生储能系统经济最优化运行方案研究[D]. 成都: 西南交通大学, 2020. [28] 刘方中. 长大坡道储能型列车再生制动能量利用方案研究[J]. 电气化铁道, 2020, 31(5): 27-31. Liu Fangzhong.Research on energy utilization scheme of regenerative braking for energy storage trains on tracks with long steep gradient[J]. Electric Railway, 2020, 31(5): 27-31. [29] 魏文婧. 高速铁路再生制动能量存储与利用控制策略研究[D]. 成都: 西南交通大学, 2019. [30] 王慧娟. 超级电容器—蓄电池混合储能系统容量优化配置方法研究[D]. 北京: 华北电力大学, 2017. [31] 马超, 董森, 华正操. 多种光伏组件组合光伏电站的混合储能容量优化配置研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(11): 1128-1135. Ma Chao, Dong Sen, Hua Zhengcao.Capacity configuration of hybrid energy storage system for PV power stations using multiple solar trackers[J]. Journal of Tianjin University(Science and Tech- nology), 2020, 53(11): 1128-1135. [32] 郭玲娟, 魏斌, 韩肖清, 等. 基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J]. 高电压技术, 2020, 46(2): 527-537. Guo Lingjuan, Wei Bin, Han Xiaoqing, et al.Capacity optimal configuration of hybrid energy storage in hybrid AC/DC micro-grid based on ensemble empi- rical mode decomposition[J]. High Voltage Engin- eering, 2020, 46(2): 527-537. [33] 杨宏伟. 基于混合储能的电气化铁路再生制动能量存储策略研究[D]. 兰州: 兰州交通大学, 2020. [34] 李彦苍, 赵丽娜. 离散变量结构优化方法研究现状及趋势[J]. 河北工程大学学报(自然科学版), 2011, 28(4): 22-26. Li Yancang, Zhao Lina.Current research and trends of structural optimization with discrete variables[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2011, 28(4): 22-26. [35] 张园. 基于进化多目标优化的智能拟合方法[D]. 西安: 西安电子科技大学, 2018. [36] 陈华根, 吴健生, 王家林, 等. 模拟退火算法机理研究[J]. 同济大学学报(自然科学版), 2004(6): 802-805. Chen Huagen, Wu Jiansheng, Wang Jialin, et al.Mechanism study of simulated annealing algorithm[J]. Journal of Tongji University (Natural Science), 2004(6): 802-805. [37] 肖晓伟, 肖迪, 林锦国, 等. 多目标优化问题的研究概述[J]. 计算机应用研究, 2011, 28(3): 805-808, 827. Xiao Xiaowei, Xiao Di, Lin Jinguo, et al.Overview on multi-objective optimization problem research[J]. Application Research of Computers, 2011, 28(3): 805-808, 827. [38] 朱颢东, 钟勇. 一种改进的模拟退火算法[J]. 计算机技术与发展, 2009, 19(6): 32-35. Zhu Haodong, Zhong Yong.A kind of renewed simulated annealing algorithm[J]. Computer Tech- nology and Development, 2009, 19(6): 32-35. [39] 杨若黎, 顾基发. 一种高效的模拟退火全局优化算法[J]. 系统工程理论与实践, 1997, 17(5): 29-35. Yang Ruoli, Gu Jifa.An efficient simulated annealing algorithm for global optimization[J]. Systems Engin- eering-Theory & Practice, 1997, 17(5): 29-35. [40] 张九龙, 王晓峰, 芦磊, 等. 改进的模拟退火算法求解规则可满足性问题[J]. 现代电子技术, 2022, 45(5): 122-128. Zhang Jiulong, Wang Xiaofeng, Lu Lei, et al.Improved simulated annealing algorithm for regular satisfiability problem[J]. Modern Electronics Tech- nique, 2022, 45(5): 122-128. [41] Tang Lianfu, Wu Lixin.Research on the integrated braking energy recovery strategy based on super- capacitor energy storage[C]//International Conference on Smart Grid and Electrical Automation, Changsha, 2017: 175-178. [42] 娄素华, 罗鹏, 吴耀武, 等. 计及负荷可控性的微网储能容量优化配置[J]. 电工技术学报, 2016, 31(21): 39-45. Lou Suhua, Luo Peng, Wu Yaowu, et al.Sizing of energy storage in microgrid with controllable load[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 39-45. [43] 郭明萱, 穆云飞, 肖迁, 等. 考虑电池寿命损耗的园区综合能源电/热混合储能优化配置[J]. 电力系统自动化, 2021, 45(13): 66-75. Guo Mingxuan, Mu Yunfei, Xiao Qian, et al.Optimal configuration of electric/thermal hybrid energy storage for park-level integrated energy system con- sidering battery life loss[J]. Automation of Electric Power Systems, 2021, 45(13): 66-75. [44] 张前图, 房立清, 赵玉龙. 具有Levy飞行特征的双子群果蝇优化算法[J]. 计算机应用, 2015, 35(5): 1348-1352. Zhang Qiantu, Fang Liqing, Zhao Yulong.Double subgroups fruit fly optimization algorithm with characteristics of Levy flight[J]. Journal of Computer Applications, 2015, 35(5): 1348-1352. [45] 王庆喜, 郭晓波. 基于莱维飞行的粒子群优化算法[J]. 计算机应用研究, 2016, 33(9): 2588-2591. Wang Qingxi, Guo Xiaobo.Particle swarm opti- mization algorithm based on Levy flight[J]. Appli- cation Research of Computers, 2016, 33(9): 2588-2591.