Coordinated Planning of Rotary Power Flow Controller and Distributed Energy Storage System Considering the Economic and Carrying Capacity of Distribution Station Area
Yan Xiangwu1, Lu Junda1, Wu Ming2, Shao Chen1, Jia Jiaoxin1
1. Hebei Provincial Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China; 2. State Grid Shanghai Energy Internet Research Institute Co. Shanghai 201210 China
Abstract:As a critical component of the power system, the power supply capacity of distribution station areas directly influences urban economic development and the quality of life for residents. With the growing integration of renewable energy sources, electric vehicles, and diverse load types, distribution station areas face significant challenges, including weak grid structures, uneven load distribution, and insufficient carrying capacity. The rotary power flow controller (RPFC), as an electromagnetic flexible interconnection device, offers advantages such as low unit investment cost and ease of operation and maintenance, enabling flexible control of line power flow in the spatial dimension. Meanwhile, the distributed energy storage system (DESS) enables power transfer between sources and loads in the temporal dimension. Their coordinated operation can significantly improve the carrying capacity of distribution station areas. Firstly, the basic structures of RPFC and DESS are introduced, followed by the establishment of their mathematical models. The RPFC is a flexible interconnection device that regulates power flow based on the principle of the rotary phase shifting transformer (RPST). By adjusting both the amplitude and phase of the series voltage, it allows for precise control of power flow along the line. The DESS, utilizing battery energy storage, exchanges power with the grid via a DC-AC inverter. Secondly, a three-layer planning framework for RPFC and DESS is constructed. In the spatial dimension, the framework first identifies the optimal power flow transfer channel, positioning the siting and sizing of the RPFC at the upper layer. This layer generates the optimal location and capacity for the RPFC with the objective of minimizing its total investment cost. The middle layer addresses the siting and sizing of the DESS, determining its installation location and capacity based on the RPFC configuration from the upper layer, aiming to minimize the DESS investment cost. The results from the middle layer are then passed to the bottom layer, which focuses on coordinated operation optimization. The goal of this bottom layer is to maximize the overall load-bearing capacity of the distribution area. Based on the siting and sizing plans from the upper and middle layers, the bottom layer determines the optimal operational power of both the RPFC and DESS for various scenarios. It further communicates the real-time charging and discharging operations of the DESS to the middle layer, while providing feedback on RPFC power transmission and branch flows to the upper layer. Through iterative optimization across the three layers, the model achieves an optimal configuration and operational strategy. Then, based on the three-layer planning framework, a three-layer coordinated planning model of RPFC and DESS is established. To solve the proposed model, a hybrid optimization algorithm is introduced, which combines an improved gravitational field algorithm (IGFA) with second-order cone programming (SOCP). The IGFA improves the population initialization process by leveraging the randomness and ergodicity characteristics of the Tent chaotic map, which enhances the algorithm's global search capability and convergence speed. Finally, the proposed model and algorithm are validated through simulation case studies. The results demonstrate that the coordinated planning of RPFC and DESS significantly improves power flow distribution and allocation in both temporal and spatial dimensions within the distribution area. This leads to a reduction in the annual network loss cost and enhances both the economic efficiency and load-bearing capacity of the distribution network. Moreover, the proposed IGFA-SOCP hybrid optimization algorithm improves global search efficiency while simplifying the solution process for multi-layer models, optimizing the overall calculation and reducing solution time.
颜湘武, 卢俊达, 吴鸣, 邵晨, 贾焦心. 考虑配电台区经济性及承载力的旋转潮流控制器与分布式储能协调规划[J]. 电工技术学报, 2025, 40(5): 1503-1520.
Yan Xiangwu, Lu Junda, Wu Ming, Shao Chen, Jia Jiaoxin. Coordinated Planning of Rotary Power Flow Controller and Distributed Energy Storage System Considering the Economic and Carrying Capacity of Distribution Station Area. Transactions of China Electrotechnical Society, 2025, 40(5): 1503-1520.
[1] 徐旖旎, 刘海涛, 熊雄, 等. 低压配电台区柔性互联关键技术与发展模式[J]. 中国电机工程学报, 2022, 42(11): 3986-4001. Xu Yini, Liu Haitao, Xiong Xiong, et al.Key technologies and development modes of flexible interconnection of low-voltage distribution station area[J]. Proceedings of the CSEE, 2022, 42(11): 3986-4001. [2] 江岳文, 罗泽宇, 程诺. 基于线性化方法的交直流混合配电系统网架规划[J]. 电工技术学报, 2024, 39(5): 1404-1418. Jiang Yuewen, Luo Zeyu, Cheng Nuo.Network planning of AC/DC hybrid distribution system based on linearization method[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1404-1418. [3] 李昀宸, 吕志鹏, 刘文龙, 等. 柔性互联配电台区联合优化配置[J]. 高电压技术, 2023, 49(10): 4223-4231. Li Yunchen, Lü Zhipeng, Liu Wenlong, et al.Coordinated optimize configuration of flexible interconnection of distribution station area[J]. High Voltage Engineering, 2023, 49(10): 4223-4231. [4] 曹昉, 郑金钊, 郑怡馨. 基于VSC的优质光伏资源区配电台区柔性互联规划方法[J]. 南方电网技术, 2023, 17(1): 14-25. Cao Fang, Zheng Jinzhao, Zheng Yixin.VSC-based flexible interconnection planning method for distribution station areas of high-quality photovoltaic resource[J]. Southern Power System Technology, 2023, 17(1): 14-25. [5] 杨志淳, 朱炳兆, 操燕春, 等. 提高配电网承载力的分布式光伏双层规划方法[J]. 华中科技大学学报(自然科学版), 2024, 52(7): 69-75. Yang Zhichun, Zhu Bingzhao, Cao Yanchun, et al.Distributed photovoltaic bilevel programming method for improving carrying capacity of distribution networks[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(7): 69-75. [6] 王强强, 姚良忠, 盛万兴, 等. 基于机会约束规划的配电网分布式光伏承载力提升方法[J]. 电力系统自动化, 2023, 47(18): 132-141. Wang Qiangqiang, Yao Liangzhong, Sheng Wanxing, et al.Enhancement method for distributed photovoltaic hosting capacity of distribution network based on chance-constrained programming[J]. Automation of Electric Power Systems, 2023, 47(18): 132-141. [7] 刘洪, 曹睿智, 韩俊, 等. 配电网的分布式发电承载能力评估研究现状与未来展望[J/OL]. 电力系统自动化, 2024: 1-13[2024-09-18]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240802.1559.004.html. Liu Hong, Cao Ruizhi, Han Jun, et al. Research status and future prospect of distributed generation hosting capacity assessment of distribution network[J/OL]. Automation of Electric Power Systems, 2024: 1-13[2024-09-18]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240802.1559.004.html. [8] 葛少云, 侯亭玉, 吴鸣, 等. 柔性互联配电网分布式电源承载能力分布鲁棒优化模型[J]. 电力系统自动化, 2023, 47(13): 140-148. Ge Shaoyun, Hou Tingyu, Wu Ming, et al.Distributionally robust optimization model of hosting capability for distributed generators in flexible interconnected distribution network[J]. Automation of Electric Power Systems, 2023, 47(13): 140-148. [9] 徐玉韬, 冯起辉, 谈竹奎, 等. 考虑转供与重构协同的多端柔性互联配电网供电恢复策略[J]. 电工技术学报, 2024, 39(9): 2696-2709. Xu Yutao, Feng Qihui, Tan Zhukui, et al.Optimal power restoration strategy for multi-terminal flexible interconnected distribution networks based on flexible interconnection device and network reconfiguration[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2696-2709. [10] 刘文龙, 吕志鹏, 刘海涛. 电力电子化配电台区形态发展以及运行控制技术综述[J]. 中国电机工程学报, 2023, 43(13): 4899-4922. Liu Wenlong, Lü Zhipeng, Liu Haitao.An overview of morphological development and operation control technology of power electronics dominated distribution area[J]. Proceedings of the CSEE, 2023, 43(13): 4899-4922. [11] 李勇, 姚天宇, 乔学博, 等. 基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J]. 电工技术学报, 2022, 37(13): 3289-3303. Li Yong, Yao Tianyu, Qiao Xuebo, et al.Optimal configuration of distributed photovoltaic and energy storage system based on joint sequential scenario and source-network-load coordination[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3289-3303. [12] 谢敏, 张世平, 李弋升, 等. 基于多模式柔性互联的交直流低压配电网优化调度[J]. 电力系统自动化, 2023, 47(6): 79-89. Xie Min, Zhang Shiping, Li Yisheng, et al.Optimal dispatch of AC/DC hybrid low-voltage distribution network based on multi-mode flexible interconnection[J]. Automation of Electric Power Systems, 2023, 47(6): 79-89. [13] 王成山, 宋关羽, 李鹏, 等. 考虑分布式电源运行特性的有源配电网智能软开关SOP规划方法[J]. 中国电机工程学报, 2017, 37(7): 1889-1897. Wang Chengshan, Song Guanyu, Li Peng, et al.Optimal configuration of soft open point for active distribution network considering the characteristics of distributed generation[J]. Proceedings of the CSEE, 2017, 37(7): 1889-1897. [14] 李勇, 凌锋, 乔学博, 等. 基于网侧资源协调的自储能柔性互联配电系统日前-日内优化[J]. 电工技术学报, 2024, 39(3): 758-773, 923. Li Yong, Ling Feng, Qiao Xuebo, et al.Day-ahead and intra-day optimization of flexible interconnected distribution system with self-energy storage based on the grid-side resource coordination[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 758-773, 923. [15] 熊正勇, 陈天华, 杜磊, 等. 基于改进灵敏度分析的有源配电网智能软开关优化配置[J]. 电力系统自动化, 2021, 45(8): 129-137. Xiong Zhengyong, Chen Tianhua, Du Lei, et al.Optimal allocation of soft open point in active distribution network based on improved sensitivity analysis[J]. Automation of Electric Power Systems, 2021, 45(8): 129-137. [16] Yan Xiangwu, Shao Chen, Jia Jiaoxin, et al.An accurate power control strategy for electromagnetic rotary power controllers[J]. IET Generation, Trans-mission & Distribution, 2023, 17(15): 3524-3540. [17] 谭振龙, 张春朋, 姜齐荣, 等. 旋转潮流控制器稳定特性研究[J]. 电网技术, 2015, 39(7): 1921-1926. Tan Zhenlong, Zhang Chunpeng, Jiang Qirong, et al.Study on steady state characteristics of rotary power flow controller[J]. Power System Technology, 2015, 39(7): 1921-1926. [18] Ba A O, Peng Tao, Lefebvre S.Rotary power-flow controller for dynamic performance evaluation: Part I: RPFC modeling[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1406-1416. [19] 颜湘武, 邵晨, 彭维锋, 等. 基于旋转式潮流控制器的有源配电网柔性合环及紧急功率控制方法[J]. 中国电机工程学报, 2023, 43(16): 6192-6205. Yan Xiangwu, Shao Chen, Peng Weifeng, et al.Flexible loop closing and emergency power control method for active distribution network based on the rotary power flow controller[J]. Proceedings of the CSEE, 2023, 43(16): 6192-6205. [20] 李铁成, 李晓军, 杨鹏, 等. 基于柔性互联的有源配电网协调优化降损方法[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-10. [2024-09-26]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240111.1446.002.html. Li Tiecheng, Li Xiaojun, Yang Peng, et al. Coordinated optimal loss reduction method of active distribution network based on flexible interconnection [J/OL]. Journal of North China Electric Power University(Natural Sciedce Edition), 2024: 1-10. [2024-09-26]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240111.1446.002.html. [21] 颜湘武, 李洋洋, 卢俊达, 等. 考虑旋转潮流控制器和需求响应的配电网新能源承载力评估方法[J/OL]. 电力系统及其自动化学报, 2024: 1-10 [2024-09-26]. https://doi.org/10.19635/j.cnki.csu-epsa.001490. Yan Xiangwu, Li Yangyang, Lu Junda, et al. Assessment method of new energy hosting capacity in distribution grid considering rotary power flow controllers and demand response.[J/OL]. Proceedings of the CSU-EPSA, 2024: 1-10[2024-09-26]. https://doi.org/10.19635/j.cnki.csu-epsa.001490. [22] 何叶, 杨晓东, 吴红斌, 等. 面向新型配电系统灵活性提升的智能软开关与储能系统协调规划[J]. 电力系统自动化, 2023, 47(18): 142-150. He Ye, Yang Xiaodong, Wu Hongbin, et al.Coordinated planning of soft open point and energy storage system for flexibility enhancement of new distribution system[J]. Automation of Electric Power Systems, 2023, 47(18): 142-150. [23] 黄志强, 陈业伟, 毛志鹏, 等. 柔性多状态开关与分布式储能系统联合接入规划[J]. 电力系统自动化, 2022, 46(14): 29-37. Huang Zhiqiang, Chen Yewei, Mao Zhipeng, et al.Joint access planning of soft open point and distributed energy storage system[J]. Automation of Electric Power Systems, 2022, 46(14): 29-37. [24] 黄子桐, 徐永海, 叶兴杰. 考虑有源配电网运行灵活性的智能储能软开关优化规划[J]. 电力工程技术, 2023, 42(1): 143-153. Huang Zitong, Xu Yonghai, Ye Xingjie.Optimal planning of soft open point integrated with energy storage system considering operation flexibility of active distribution network[J]. Electric Power Engineering Technology, 2023, 42(1): 143-153. [25] 张浩, 沈继红, 张铁男, 等. 一种基于混沌映射的粒子群优化算法及性能仿真[J]. 系统仿真学报, 2008, 20(20): 5462-5465, 5470. Zhang Hao, Shen Jihong, Zhang Tienan, et al.Improvement of chaos particle swarm optimization algorithm and analysis of its property[J]. Journal of System Simulation, 2008, 20(20): 5462-5465, 5470. [26] 颜湘武, 邵晨, 吴鸣, 等. 基于电磁式旋转潮流控制器的有源配电网多场景控制[J]. 电工技术学报, 2023, 38(增刊1): 44-55. Yan Xiangwu, Shao Chen, Wu Ming, et al.Multi-scene control method of active distribution network based on electromagnetic rotating power flow controller[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 44-55. [27] Ba A O, Peng Tao, Lefebvre S.Rotary power-flow controller for dynamic performance evaluation: part II: RPFC application in a transmission corridor[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1417-1425. [28] 颜湘武, 彭维锋, 贾焦心, 等. 基于转速自适应控制的旋转潮流控制器功率调节方法研究[J]. 中国电机工程学报, 2023, 43(13): 4971-4987. Yan Xiangwu, Peng Weifeng, Jia Jiaoxin, et al.Research on power regulation method of rotary power flow controller based on speed adaptive control[J]. Proceedings of the CSEE, 2023, 43(13): 4971-4987. [29] 谭振龙, 张春朋, 姜齐荣, 等. 旋转潮流控制器与统一潮流控制器和Sen Transformer的对比[J]. 电网技术, 2016, 40(3): 868-874. Tan Zhenlong, Zhang Chunpeng, Jiang Qirong, et al.Comparative research on rotary power flow controller, unified power flow controller and Sen Transformer[J]. Power System Technology, 2016, 40(3): 868-874. [30] 陈柏超, 刘雷, 余梦泽, 等. 电磁混合式潮流控制器本体优化及控制[J]. 高电压技术, 2017, 43(4): 1086-1094. Chen Baichao, Liu Lei, Yu Mengze, et al.Ontology optimization and control strategy of electromagnetic hybrid power flow controller[J]. High Voltage Engineering, 2017, 43(4): 1086-1094. [31] 贾焦心, 彭维锋, 颜湘武, 等. 基于余弦定理的旋转潮流控制器功率解耦控制方法[J]. 电工技术学报, 2023, 38(13): 3425-3435. Jia Jiaoxin, Peng Weifeng, Yan Xiangwu, et al.Research on power decoupling control method rotary power flow controller based on cosine law[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3425-3435. [32] 邵晨, 颜湘武, 贾焦心, 等. 面向“花瓣型”配电网的旋转潮流控制器两阶段转速功率控制策略[J/OL]. 电工技术学报, 2024: 1-12[2024-10-22]. https://doi.org/10.19595/j.cnki.1000-6753.tces.232053. Shao Chen, Yan Xiangwu, Jia Jiaoxin, et al. Two-stage speed-power control strategy for rotating power flow controller in "petal-shaped" distribution networks [J/OL]. Transactions of China Electrotechnical Society, 2024: 1-12[2024-10-22]. https://doi.org/10.19595/j.cnki.1000-6753.tces.232053. [33] 王灿, 吴耀文, 孙建军, 等. 基于柔性多状态开关的主动配电网双层负荷均衡方法[J]. 电力系统自动化, 2021, 45(8): 77-85. Wang Can, Wu Yaowen, Sun Jianjun, et al.Bi-layer load balancing method in active distribution network based on flexible multi-state switch[J]. Automation of Electric Power Systems, 2021, 45(8): 77-85. [34] 戴松灵, 王晞, 刘方, 等. 考虑综合承载力的主动配电网优化调度与运行[J]. 电力建设, 2020, 41(2): 67-75. Dai Songling, Wang Xi, Liu Fang, et al.Optimal scheduling and operating of active distribution network considering comprehensive carrying capacity[J]. Electric Power Construction, 2020, 41(2): 67-75. [35] 苏本庆, 李宏仲. 含高比例分布式电源的配电网灵活性评估方法[J]. 上海电力大学学报, 2023, 39(6): 523-528, 535. Su Benqing, Li Hongzhong.A flexibility evaluation method for distribution network with high proportion of distributed generation[J]. Journal of Shanghai University of Electric Power, 2023, 39(6): 523-528, 535. [36] 郝文斌, 孟志高, 张勇, 等. 新型电力系统下多分布式电源接入配电网承载力评估方法研究[J]. 电力系统保护与控制, 2023, 51(14): 23-33. Hao Wenbin, Meng Zhigao, Zhang Yong, et al.Carrying capacity evaluation of multiple distributed power supply access to the distribution network with the background of a new power system[J]. Power System Protection and Control, 2023, 51(14): 23-33. [37] 刘一兵, 吴文传, 张伯明, 等. 基于混合整数二阶锥规划的主动配电网有功-无功协调多时段优化运行[J]. 中国电机工程学报, 2014, 34(16): 2575-2583. Liu Yibing, Wu Wenchuan, Zhang Boming, et al.A mixed integer second-order cone programming based active and reactive power coordinated multi-period optimization for active distribution network[J]. Proceedings of the CSEE, 2014, 34(16): 2575-2583. [38] Huang Lan, Hu Xuemei, Wang Yan, et al.Gravitation field algorithm with optimal detection for unconstrained optimization[C]//2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 2017: 1411-1416. [39] 陈世明, 刘俊恺, 肖娟. 基于引力场优化的Unscented FastSLAM2.0算法[J]. 控制理论与应用, 2018, 35(8): 1186-1193. Chen Shiming, Liu Junkai, Xiao Juan.Unscented Fast SLAM2.0 algorithm based on gravitational field optimization[J]. Control Theory & Applications, 2018, 35(8): 1186-1193. [40] 胡雪梅. 爆炸引力场算法及其应用研究[D]. 长春: 吉林大学, 2023. Hu Xuemei.Research on the algorithm of explosive gravitational field and its application[D]. Changchun: Jilin University, 2023. [41] 夏雨烁, 张新生, 王明虎. 基于ISSA-NESN的可再生能源电力需求预测研究[J]. 电网与清洁能源, 2023, 39(6): 136-143. Xia Yushuo, Zhang Xinsheng, Wang Minghu.A study on renewable energy power demand forecast based on ISSA-NESN[J]. Power System and Clean Energy, 2023, 39(6): 136-143. [42] 张娜, 赵泽丹, 包晓安, 等. 基于改进的Tent混沌万有引力搜索算法[J]. 控制与决策, 2020, 35(4): 893-900. Zhang Na, Zhao Zedan, Bao Xiaoan, et al.Gravitational search algorithm based on improved Tent chaos[J]. Control and Decision, 2020, 35(4): 893-900. [43] 郭清元, 吴杰康, 莫超, 等. 基于混合整数二阶锥规划的新能源配电网电压无功协同优化模型[J]. 中国电机工程学报, 2018, 38(5): 1385-1396. Guo Qingyuan, Wu Jiekang, Mo Chao, et al.A model for multi-objective coordination optimization of voltage and reactive power in distribution networks based on mixed integer second-order cone program-mming[J]. Proceedings of the CSEE, 2018, 38(5): 1385-1396. [44] Su C T, Lee Chusheng.Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 1022-1027. [45] 李伟楠, 王现勋, 梅亚东, 等. 基于趋势场景缩减的水风光协同运行随机模型[J]. 华中科技大学学报(自然科学版), 2019, 47(8): 120-127. Li Weinan, Wang Xianxun, Mei Yadong, et al.Stochastic hydro-wind-photovoltaic cooperative operation model based on tendency scenario reduction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(8): 120-127. [46] 顾光荣, 杨鹏, 汤波, 等. 源-荷-储协同优化的配电网平衡能力提升方法[J]. 中国电机工程学报, 2024, 44(13): 5097-5109. Gu Guangrong, Yang Peng, Tang Bo, et al.A method for improving the balance ability of distribution networks through source-load-storage collaborative optimization[J]. Proceedings of the CSEE, 2024, 44(13): 5097-5109. [47] 国内首台旋转移相潮流调控装置投用[J]. 电子质量, 2024(7): 105. The first rotating phase power flow control device in China is put into use[J]. Electronics Quality, 2024(7): 105.