A Bi-Level Programming Model of Rotary Power Flow Controller for Improving the Economy and Comprehensive Carrying Capacity of Distribution Station Area
Yan Xiangwu1, Lu Junda1, Jia Jiaoxin1, Wu Ming2, Niu Geng2
1. Hebei Provincial Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China; 2. State Grid Shanghai Energy Internet Research Institute Co. Shanghai 201210 China
Abstract:As a vital component of the power system, the power supply capacity within distribution station areas exerts a direct influence on urban economic development and the enhancement of residents' living standards. With the escalating integration of renewable energy sources, electric vehicles, and diversified load connections, these areas are confronted with significant challenges, including weak grid structures, uneven local load distribution, and inadequate carrying capacities. While the power electronic flexible interconnection device offers a potential solution to these issues, its high investment and operational costs hinder widespread adoption. In contrast, the rotary power flow controller (RPFC), an electromagnetic device, presents advantages such as cost-effectiveness and resilience to impacts. By enabling spatial regulation of line power flow, the RPFC can effectively bolster the bearing capacity of distribution areas, thereby enhancing their overall carrying capacity. Firstly, the steady-state power flow model of the RPFC is established. The RPFC is a flexible interconnection device that regulates power flow based on the rotary phase shifting transformer (RPST) principle. Adjusting both the amplitude and phase of the series voltage allows for precise control of power flow along the line. Based on this, a flexible interconnection structure of the distribution station area containing RPFC is proposed. Secondly, a bi-level programming framework for RPFC is proposed for improving the economy and comprehensive carrying capacity of the distribution station area, which includes the RPFC site selection and capacity determination layer and the operation optimization layer. The upper layer is the RPFC site selection and capacity determination layer. This layer obtains typical scenarios based on the scenario reduction method of Kantorovich distance. The optimization goal is to minimize the total investment cost of the distribution station area. At the same time, under the condition of satisfying the RPFC power constraint and capacity constraint, the current optimal location and capacity of RPFC are generated, and then the RPFC determination scheme is passed to the lower layer. The lower layer is the operation optimization layer. The optimization goal is to maximize the comprehensive carrying capacity of the distribution station area. Based on the upper layer configuration scheme, this layer solves the optimal operating power of RPFC under each scenario, and then feeds back the optimization results such as RPFC transmission power and branch power flow to the upper layer. The layers optimize each other to obtain the optimal configuration planning and operation optimization scheme. Then, a bi-level programming model of the distribution station area containing RPFC is constructed based on the proposed bi-level programming framework. To improve the optimization speed and accuracy, an improved gravitational field algorithm is proposed, combined with second-order cone planning to form a hybrid optimization algorithm to solve the proposed bi-level programming model. Finally, the proposed model and algorithm are validated through simulation examples. The simulation results indicate that the proposed IGFA-SOCP hybrid optimization algorithm enhances global search capability while reducing the difficulty of solving multi-layer models, thereby optimizing the overall model-solving process and reducing solution time. This verifies the correctness and effectiveness of the proposed model and solution algorithm.
颜湘武, 卢俊达, 贾焦心, 吴鸣, 牛耕. 面向配电台区经济性及综合承载力提升的旋转潮流控制器双层规划模型[J]. 电工技术学报, 2025, 40(7): 2078-2094.
Yan Xiangwu, Lu Junda, Jia Jiaoxin, Wu Ming, Niu Geng. A Bi-Level Programming Model of Rotary Power Flow Controller for Improving the Economy and Comprehensive Carrying Capacity of Distribution Station Area. Transactions of China Electrotechnical Society, 2025, 40(7): 2078-2094.
[1] 徐玉韬, 冯起辉, 谈竹奎, 等. 考虑转供与重构协同的多端柔性互联配电网供电恢复策略[J]. 电工技术学报, 2024, 39(9): 2696-2709. Xu Yutao, Feng Qihui, Tan Zhukui, et al.Optimal power restoration strategy for multi-terminal flexible interconnected distribution networks based on flexible interconnection device and network reconfiguration[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2696-2709. [2] 徐旖旎, 刘海涛, 熊雄, 等. 低压配电台区柔性互联关键技术与发展模式[J]. 中国电机工程学报, 2022, 42(11): 3986-4001. Xu Yini, Liu Haitao, Xiong Xiong, et al.Key technologies and development modes of flexible interconnection of low-voltage distribution station area[J]. Proceedings of the CSEE, 2022, 42(11): 3986-4001. [3] 曹昉, 郑金钊, 郑怡馨. 基于VSC的优质光伏资源区配电台区柔性互联规划方法[J]. 南方电网技术, 2023, 17(1): 14-25. Cao Fang, Zheng Jinzhao, Zheng Yixin.VSC-based flexible interconnection planning method for distri-bution station areas of high-quality photovoltaic resource[J]. Southern Power System Technology, 2023, 17(1): 14-25. [4] 朱建昆, 高红均, 贺帅佳, 等. 考虑供电能力提升的低压配电网柔性互联规划[J]. 高电压技术, 2024, 50(8): 3545-3554. Zhu Jiankun, Gao Hongjun, He Shuaijia, et al.Flexible interconnection planning of low-voltage station area distribution network considering power supply capacity improvement[J]. High Voltage Engineering, 2024, 50(8): 3545-3554. [5] 王婷, 陈晨, 谢海鹏. 配电网对分布式电源和电动汽车的承载力评估及提升方法综述[J]. 电力建设, 2022, 43(9): 12-24. Wang Ting, Chen Chen, Xie Haipeng.Review on evaluation and promotion methods of carrying capacity for distributed generation and electric vehicles in distribution network[J]. Electric Power Construction, 2022, 43(9): 12-24. [6] 王书征, 赵洋, 李沛林, 等. 考虑电压-无功调节的台区互联装置规划方法[J]. 电力工程技术, 2024, 43(3): 111-120. Wang Shuzheng, Zhao Yang, Li Peilin, et al.Planning method of station area interconnection device considering voltage-reactive power regulation[J]. Electric Power Engineering Technology, 2024, 43(3): 111-120. [7] 王皓靖, 郭佩乾, 时珊珊, 等. 中压配电网多台区柔性互联技术应用现状与展望[J]. 电力系统自动化, 2025, 49(5): 13-23. Wang Haojing, Guo Peiqian, Shi Shanshan, et al.Application status and prospects of multi-substation flexible interconnection technology in medium-voltage distribution networks[J]. Automation of Electric Power Systems, 2025, 49(5): 13-23. [8] 李勇, 凌锋, 乔学博, 等. 基于网侧资源协调的自储能柔性互联配电系统日前-日内优化[J]. 电工技术学报, 2024, 39(3): 758-773, 923. Li Yong, Ling Feng, Qiao Xuebo, et al.Day-ahead and intra-day optimization of flexible interconnected distribution system with self-energy storage based on the grid-side resource coordination[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 758-773, 923. [9] Zhang Shenxi, Fang Yichen, Zhang Heng, et al.Maximum hosting capacity of photovoltaic generation in SOP-based power distribution network integrated with electric vehicles[J]. IEEE Transactions on Indus-trial Informatics, 2022, 18(11): 8213-8224. [10] 杨剑锋, 李婷, 杨爱民, 等. 含电能路由器的光伏配电网电压越限问题潮流优化研究[J]. 发电技术, 2025, 46(1): 113-125. Yang Jianfeng, Li Ting, Yang Aimin, et al.Research on tidal optimization of voltage overrun problem in photovoltaic distribution network with electrical energy router[J]. Power Generation Technology, 2025, 46(1): 113-125. [11] 祁琪, 姜齐荣, 许彦平. 智能配电网柔性互联研究现状及发展趋势[J]. 电网技术, 2020, 44(12): 4664-4676. Qi Qi, Jiang Qirong, Xu Yanping.Research status and development prospect of flexible interconnection for smart distribution networks[J]. Power System Technology, 2020, 44(12): 4664-4676. [12] 张沈习, 王浩宇, 李然, 等. 考虑智能软开关接入的主动配电网扩展规划方法[J]. 中国电机工程学报, 2023, 43(1): 48-61. Zhang Shenxi, Wang Haoyu, Li Ran, et al.Active distribution network expansion planning method considering the integration of soft open point[J]. Proceedings of the CSEE, 2023, 43(1): 48-61. [13] 熊正勇, 陈天华, 杜磊, 等. 基于改进灵敏度分析的有源配电网智能软开关优化配置[J]. 电力系统自动化, 2021, 45(8): 129-137. Xiong Zhengyong, Chen Tianhua, Du Lei, et al.Optimal allocation of soft open point in active distribution network based on improved sensitivity analysis[J]. Automation of Electric Power Systems, 2021, 45(8): 129-137. [14] 葛少云, 侯亭玉, 吴鸣, 等. 柔性互联配电网分布式电源承载能力分布鲁棒优化模型[J]. 电力系统自动化, 2023, 47(13): 140-148. Ge Shaoyun, Hou Tingyu, Wu Ming, et al.Dis-tributionally robust optimization model of hosting capability for distributed generators in flexible inter-connected distribution network[J]. Automation of Electric Power Systems, 2023, 47(13): 140-148. [15] 王灿, 吴耀文, 孙建军, 等. 基于柔性多状态开关的主动配电网双层负荷均衡方法[J]. 电力系统自动化, 2021, 45(8): 77-85. Wang Can, Wu Yaowen, Sun Jianjun, et al.Bi-layer load balancing method in active distribution network based on flexible multi-state switch[J]. Automation of Electric Power Systems, 2021, 45(8): 77-85. [16] Yan Xiangwu, Peng Weifeng, Wang Yang, et al.Flexible loop closing control method for an active distribution network based on dual rotary phase shifting transformers[J]. IET Generation, Transmission & Distribution, 2022, 16(20): 4204-4214. [17] 邵晨, 颜湘武, 贾焦心, 等. 面向“花瓣型”配电网的旋转潮流控制器两阶段转速功率控制策略[J].电工技术学报, 2025, 40(1): 52-63. Shao Chen, Yan Xiangwu, Jia Jiaoxin, et al.Two-stage speed-power control strategy for rotating power flow controller in "petal-shaped" distribution networks[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 52-63. [18] Ba A O, Peng Tao, Lefebvre S.Rotary power-flow controller for dynamic performance evaluation: Part I: RPFC modeling[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1406-1416. [19] 颜湘武, 彭维锋, 贾焦心, 等. 基于转速自适应控制的旋转潮流控制器功率调节方法研究[J]. 中国电机工程学报, 2023, 43(13): 4971-4987. Yan Xiangwu, Peng Weifeng, Jia Jiaoxin, et al.Research on power regulation method of rotary power flow controller based on speed adaptive control[J]. Proceedings of the CSEE, 2023, 43(13): 4971-4987. [20] 颜湘武, 邵晨, 吴鸣, 等. 基于电磁式旋转潮流控制器的有源配电网多场景控制[J]. 电工技术学报, 2023, 38(增刊1): 44-55. Yan Xiangwu, Shao Chen, Wu Ming, et al.Multi-scene control method of active distribution network based on electromagnetic rotating power flow controller[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 44-55. [21] 李铁成, 李晓军, 杨鹏, 等. 基于柔性互联的有源配电网协调优化降损方法[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-10. http://kns.cnki.net/kcms/detail/13.1212.TM.20240111.1446.002.html. Li Tiecheng, Li Xiaojun, Yang Peng, et al. Coordinated optimal loss reduction method of active distribution network based on flexible interconnection [J/OL]. Journal of North China Electric Power University, 2024: 1-10. http://kns.cnki.net/kcms/detail/13.1212.TM.20240111.1446.002.html. [22] 颜湘武, 李洋洋, 卢俊达, 等. 考虑旋转潮流控制器和需求响应的配电网新能源承载力评估方法[J/OL]. 电力系统及其自动化学报, 1-10[2024-09-26].https://doi.org/10.19635/j.cnki.csu-epsa.001490. Yan Xiangwu, Li Yangyang, Lu Junda, et al.Asses-sment method of new energy hosting capacity in distribution grid considering rotary power flow controllers and demand response[J/OL]. Proceedings of the CSU-EPSA, 1-10[2024-09-26].https://doi.org/10.19635/j.cnki.csu-epsa.001490. [23] 王成山, 宋关羽, 李鹏, 等. 考虑分布式电源运行特性的有源配电网智能软开关SOP规划方法[J]. 中国电机工程学报, 2017, 37(7): 1889-1897. Wang Chengshan, Song Guanyu, Li Peng, et al.Optimal configuration of soft open point for active distribution network considering the characteristics of distributed generation[J]. Proceedings of the CSEE, 2017, 37(7): 1889-1897. [24] 马丽, 薛飞, 石季英, 等. 有源配电网分布式电源与智能软开关三层协调规划模型[J]. 电力系统自动化, 2018, 42(11): 86-93. Ma Li, Xue Fei, Shi Jiying, et al.Tri-level coordinated planning model of distributed generator and intelligent soft open point for active distribution network[J]. Automation of Electric Power Systems, 2018, 42(11): 86-93. [25] 冯智莉, 易国洪, 李普山, 等. 并行化遗传算法研究综述[J]. 计算机应用与软件, 2018, 35(11): 1-7, 80. Feng Zhili, Yi Guohong, Li Pushan, et al.Review of parallel genetic algorithm[J]. Computer Applications and Software, 2018, 35(11): 1-7, 80. [26] Huang Lan, Hu Xuemei, Wang Yan, et al.Gravitation field algorithm with optimal detection for unconstrained optimization[C]//2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 2017: 1411-1416. [27] 陈世明, 刘俊恺, 肖娟. 基于引力场优化的Unscented FastSLAM2.0算法[J]. 控制理论与应用, 2018, 35(8): 1186-1193. Chen Shiming, Liu Junkai, Xiao Juan.Unscented Fast SLAM2.0 algorithm based on gravitational field optimization[J]. Control Theory & Applications, 2018, 35(8): 1186-1193. [28] 胡雪梅. 爆炸引力场算法及其应用研究[D]. 长春: 吉林大学, 2023. Hu Xuemei.Research on explosion gravitation field algorithm and its application[D]. Changchun: Jilin University, 2023. [29] 贾焦心, 彭维锋, 颜湘武, 等. 基于余弦定理的旋转潮流控制器功率解耦控制方法[J]. 电工技术学报, 2023, 38(13): 3425-3435. Jia Jiaoxin, Peng Weifeng, Yan Xiangwu, et al.Research on power decoupling control method rotary power flow controller based on cosine law[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3425-3435. [30] 颜湘武, 邵晨, 彭维锋, 等. 基于旋转式潮流控制器的有源配电网柔性合环及紧急功率控制方法[J]. 中国电机工程学报, 2023, 43(16): 6192-6204. Yan Xiangwu, Shao Chen, Peng Weifeng, et al.Flexible loop closing and emergency power control method for active distribution network based on the rotary power flow controller[J]. Proceedings of the CSEE, 2023, 43(16): 6192-6204. [31] 谭振龙, 张春朋, 姜齐荣, 等. 旋转潮流控制器与统一潮流控制器和Sen Transformer的对比[J]. 电网技术, 2016, 40(3): 868-874. Tan Zhenlong, Zhang Chunpeng, Jiang Qirong, et al.Comparative research on rotary power flow controller, unified power flow controller and Sen transformer[J]. Power System Technology, 2016, 40(3): 868-874. [32] 陈柏超, 刘雷, 余梦泽, 等. 电磁混合式潮流控制器本体优化及控制[J]. 高电压技术, 2017, 43(4): 1086-1094. Chen Baichao, Liu Lei, Yu Mengze, et al.Ontology optimization and control strategy of electromagnetic hybrid power flow controller[J]. High Voltage Engineering, 2017, 43(4): 1086-1094. [33] 刘一兵, 吴文传, 张伯明, 等. 基于混合整数二阶锥规划的主动配电网有功-无功协调多时段优化运行[J]. 中国电机工程学报, 2014, 34(16): 2575-2583. Liu Yibing, Wu Wenchuan, Zhang Boming, et al.A mixed integer second-order cone programming based active and reactive power coordinated multi-period optimization for active distribution network[J]. Proceedings of the CSEE, 2014, 34(16): 2575-2583. [34] 杨志淳, 朱炳兆, 操燕春, 等. 提高配电网承载力的分布式光伏双层规划方法[J]. 华中科技大学学报(自然科学版), 2024, 52(7): 69-75. Yang Zhichun, Zhu Bingzhao, Cao Yanchun, et al.Distributed photovoltaic bilevel programming method for improving carrying capacity of distribution net-works[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(7): 69-75. [35] 刘洪, 曹睿智, 韩俊, 等. 配电网的分布式发电承载能力评估研究现状与未来展望[J/OL]. 电力系统自动化, 2024: 1-13. http://kns.cnki.net/kcms/detail/32.1180.TP.20240802.1559.004.html. Liu Hong, Cao Ruizhi, Han Jun, et al. Research status and future prospect of distributed generation hosting capacity assessment of distribution network [J/OL]. Automation of Electric Power Systems, 2024: 1-13. http://kns.cnki.net/kcms/detail/32.1180.TP.20240802.1559.004.html. [36] 王强强, 姚良忠, 盛万兴, 等. 基于机会约束规划的配电网分布式光伏承载力提升方法[J]. 电力系统自动化, 2023, 47(18): 132-141. Wang Qiangqiang, Yao Liangzhong, Sheng Wanxing, et al.Enhancement method for distributed photovoltaic hosting capacity of distribution network based on chance-constrained programming[J]. Automation of Electric Power Systems, 2023, 47(18): 132-141. [37] 戴松灵, 王晞, 刘方, 等. 考虑综合承载力的主动配电网优化调度与运行[J]. 电力建设, 2020, 41(2): 67-75. Dai Songling, Wang Xi, Liu Fang, et al.Optimal scheduling and operating of active distribution network considering comprehensive carrying capacity[J]. Electric Power Construction, 2020, 41(2): 67-75. [38] 何叶, 杨晓东, 吴红斌, 等. 面向新型配电系统灵活性提升的智能软开关与储能系统协调规划[J]. 电力系统自动化, 2023, 47(18): 142-150. He Ye, Yang Xiaodong, Wu Hongbin, et al.Coordinated planning of soft open point and energy storage system for flexibility enhancement of new distribution system[J]. Automation of Electric Power Systems, 2023, 47(18): 142-150. [39] 郝文斌, 孟志高, 张勇, 等. 新型电力系统下多分布式电源接入配电网承载力评估方法研究[J]. 电力系统保护与控制, 2023, 51(14): 23-33. Hao Wenbin, Meng Zhigao, Zhang Yong, et al.Carrying capacity evaluation of multiple distributed power supply access to the distribution network with the background of a new power system[J]. Power System Protection and Control, 2023, 51(14): 23-33. [40] Farivar M, Low S H.Branch flow model: relaxations and convexification: part I[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2554-2564. [41] 娄素华, 胡斌, 吴耀武, 等. 碳交易环境下含大规模光伏电源的电力系统优化调度[J]. 电力系统自动化, 2014, 38(17): 91-97. Lou Suhua, Hu Bin, Wu Yaowu, et al.Optimal dispatch of power system integrated with large scale photovoltaic generation under carbon trading environment[J]. Automation of Electric Power Systems, 2014, 38(17): 91-97. [42] 赵书强, 要金铭, 李志伟. 基于改进K-means聚类和SBR算法的风电场景缩减方法研究[J]. 电网技术, 2021, 45(10): 3947-3954. Zhao Shuqiang, Yao Jinming, Li Zhiwei.Wind power scenario reduction based on improved K-means clustering and SBR algorithm[J]. Power System Technology, 2021, 45(10): 3947-3954. [43] 鲜杏, 范传光, 文闪闪, 等. 考虑可再生能源随机性的孤岛微网容量优化配置方法[J]. 武汉大学学报(工学版), 2016, 49(1): 100-104, 125. Xian Xing, Fan Chuanguang, Wen Shanshan, et al.Optimal deployment for island microgrid considering probabilistic factors of renewable energy generations[J]. Engineering Journal of Wuhan University, 2016, 49(1): 100-104, 125. [44] 李宏玉, 张孝民, 姜晨辉, 等. 基于改进飞蛾扑火算法的电动汽车充电站选址[J]. 电气自动化, 2023, 45(5): 113-114, 118. Li Hongyu, Zhang Xiaomin, Jiang Chenhui, et al.Location selection of electric vehicle charging station based on improved moth-flame algorithm[J]. Electrical Automation, 2023, 45(5): 113-114, 118. [45] 夏雨烁, 张新生, 王明虎. 基于ISSA-NESN的可再生能源电力需求预测研究[J]. 电网与清洁能源, 2023, 39(6): 136-143. Xia Yushuo, Zhang Xinsheng, Wang Minghu.A study on renewable energy power demand forecast based on ISSA-NESN[J]. Power System and Clean Energy, 2023, 39(6): 136-143. [46] 郭清元, 吴杰康, 莫超, 等. 基于混合整数二阶锥规划的新能源配电网电压无功协同优化模型[J]. 中国电机工程学报, 2018, 38(5): 1385-1396. Guo Qingyuan, Wu Jiekang, Mo Chao, et al.A model for multi-objective coordination optimization of voltage and reactive power in distribution networks based on mixed integer second-order cone programming[J]. Proceedings of the CSEE, 2018, 38(5): 1385-1396. [47] 国内首台旋转移相潮流调控装置投用[J]. 电子质量, 2024(7): 105. The first rotating phase power flow control device in China is put into use[J]. Electronics Quality, 2024(7): 105. [48] 刘方, 杨秀, 时珊珊, 等. 基于序列运算的微网经济优化调度[J]. 电工技术学报, 2015, 30(20): 227-237. Liu Fang, Yang Xiu, Shi Shanshan, et al.Economic operation of micro-grid based on sequence operation[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 227-237. [49] 颜湘武, 徐韵, 李若瑾, 等. 基于模型预测控制含可再生分布式电源参与调控的配电网多时间尺度无功动态优化[J]. 电工技术学报, 2019, 34(10): 2022-2037. Yan Xiangwu, Xu Yun, Li Ruojin, et al.Multi-time scale reactive power optimization of distribution grid based on model predictive control and including RDG regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2022-2037. [50] 许昌, 杨建川, 李辰奇, 等. 复杂地形风电场微观选址优化[J]. 中国电机工程学报, 2013, 33(31): 58-64, 7. Xu Chang, Yang Jianchuan, Li Chenqi, et al.Optimization of wind farm layout in complex terrain[J]. Proceedings of the CSEE, 2013, 33(31): 58-64, 7. [51] 颜湘武, 卢俊达, 贾焦心, 等. 含循环换电负荷及充电站的微电网多目标优化调度[J]. 华北电力大学学报(自然科学版), 2024, 51(2): 1-12. Yan Xiangwu, Lu Junda, Jia Jiaoxin, et al.A multi-objective optimal dispatch of microgrid with cyclic swapping loads and charging stations[J]. Journal of North China Electric Power University (Natural Science Edition), 2024, 51(2): 1-12.