Abstract:Under the requirements of the dual carbon target, the country has vigorously carried out green and energy-saving 5G base stations. 5G base stations are equipped with rooftop photovoltaic and energy storage batteries to solve the problem of high power consumption and high cost of base stations. However, the distributed photovoltaic output of the roof in different load areas has spatio-temporal differences with the load of the base station, and there is a problem of photovoltaic absorption difficulty. Aiming at the above problems, this paper establishes an optimal scheduling model of 5G base station considering communication load migration and dynamic backup of energy storage, aiming at maximizing the photovoltaic absorption rate and minimizing the base station operating cost.By transferring the communication load of base stations in different load areas, the load size of 5G base stations is changed to solve the mismatch between photovoltaic output of buildings with different land use types and the load of base stations. Firstly, based on the analysis of the differences of rooftop PV output and base station load in industrial areas, administrative districts, commercial areas and residential areas, this paper establishes a roof PV output and 5G base station load migration model to realize the spatio-temporal differences of base station load and roof PV in different load areas. Secondly, according to the backup power demand of 5G base station, considering the distribution network reliability and communication load characteristics of each load area, the charging and discharging mechanism of energy storage dynamic backup power is proposed. Finally, the optimal scheduling model of 5G base station is established. This model not only takes into account energy saving and consumption reduction in 5G base stations, but also promotes photovoltaic consumption in different load areas. In this paper, four scenarios and three planning area schemes are set up for verification and comparison. The following conclusions can be drawn from the calculation example analysis: (1) The introduction of communication load migration can change the power distribution of the base station, improve the power of the base station with difficulty in photovoltaic absorption to a certain extent, so as to promote photovoltaic absorption. The photovoltaic absorption rate is increased by 4.95%, and promote the low-load base station to move the load out and save energy by sleeping, accounting for 13.43% of energy saving. (2) The introduction of dynamic backup of energy storage in base station makes the backup capacity of energy storage change dynamically with the power of base station, which improves the potential of low storage and high production of energy storage, reduces the power purchase cost of base station, and reduces the daily operating cost of a single base station by 7.02 yuan. (3) Under the proposed model, due to the limited coverage range of the base station, the communication load migration range is limited. Therefore, the model in this paper is suitable for 5G networks covering multiple industrial, administrative, commercial and residential areas with a small area in a single area.
麻秀范, 刘子豪, 王颖, 冯晓瑜. 考虑通信负载迁移及储能动态备电的5G基站光伏消纳能力研究[J]. 电工技术学报, 2023, 38(21): 5832-5845.
Ma Xiufan, Liu Zihao, Wang Ying, Feng Xiaoyu. Research on Photovoltaic Absorption Capacity of 5G Base Station Considering Communication Load Migration and Energy Storage Dynamic Backup. Transactions of China Electrotechnical Society, 2023, 38(21): 5832-5845.
[1] 刘友波, 王晴, 曾琦, 等. 能源互联网背景下5G网络能耗管控关键技术及展望[J]. 电力系统自动化, 2021, 45(12): 174-183. Liu Youbo, Wang Qing, Zeng Qi, et al.Key technologies and prospects of energy consumption management for 5G network in background of energy Internet[J]. Automation of Electric Power Systems, 2021, 45(12): 174-183. [2] 黄彦钦, 余浩, 尹钧毅, 等. 电力物联网数据传输方案:现状与基于5G技术的展望[J]. 电工技术学报, 2021, 36(17): 3581-3593. Huang Yanqin, Yu Hao, Yin Junyi, et al.Data transmission schemes of power Internet of Things: present and outlook based on 5G technology[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3581-3593. [3] 叶晨, 王蓓蓓, 薛必克, 等. 考虑超售的共享分布式光储混合运营模式协同策略研究[J]. 电工技术学报, 2022, 37(7): 1836-1846. Ye Chen, Wang Beibei, Xue Bike, et al.Study on the coordination strategy of sharing distributed photovoltaic energy storage hybrid operation mode considering overselling[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1836-1846. [4] 周宸宇, 冯成, 王毅. 基于移动用户接入控制的5G通信基站需求响应[J]. 中国电机工程学报, 2021, 41(16): 5452-5462. Zhou Chenyu, Feng Cheng, Wang Yi.Demand response of 5G communication base stations based on admission control of mobile users[J]. Proceedings of the CSEE, 2021, 41(16): 5452-5462. [5] 林固静, 高赐威, 宋梦, 等. 含通信基站备用储能的虚拟电厂构建及调度方法[J]. 电力系统自动化, 2022, 46(18): 99-107. Lin Gujing, Gao Ciwei, Song Meng, et al.Construction and dispatch method of virtual power plant with backup energy storage in communication base stations[J]. Automation of Electric Power Systems, 2022, 46(18): 99-107. [6] 刘雨佳, 樊艳芳. 计及5G基站储能和技术节能措施的虚拟电厂调度优化策略[J]. 电力系统及其自动化学报, 2022, 34(1): 8-15. Liu Yujia, Fan Yanfang.Optimal scheduling strategy for virtual power plant considering 5G base station technology, energy-storage, and energy-saving measures[J]. Proceedings of the CSU-EPSA, 2022, 34(1): 8-15. [7] 曾博, 穆宏伟, 董厚琦, 等. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292. Zeng Bo, Mu Hongwei, Dong Houqi, et al.Optimization of active distribution network operation considering decarbonization endowment from 5G base stations[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 279-292. [8] 韩子颜, 王守相, 赵倩宇, 等. 计及分时电价的5G基站光储系统容量优化配置方法[J]. 中国电力, 2022, 55(9): 8-15. Han Ziyan, Wang Shouxiang, Zhao Qianyu, et al.A capacity optimization configuration method for photovoltaic and energy storage system of 5G base station considering time-of-use electricity price[J]. Electric Power, 2022, 55(9): 8-15. [9] 李昆, 方家琨, 艾小猛, 等. 考虑通信与配套设备协调优化的大规模5G宏基站网络能量管理模型[J]. 中国电机工程学报, 2023, 43(14): 5391-5404. Li Kun, Fang Jiakun, Ai Xiaomeng, et al.Energy Management model of large-scale 5G macro base stations network considering the coordinated optimization of communication equipment and standard equipment[J]. Proceedings of the CSEE, 2023, 43(14): 5391-5404. [10] 靳现林, 赵迎春, 吴刚. 考虑分布式光伏和电动汽车接入的配电网空间负荷预测方法[J]. 电力系统保护与控制, 2019, 47(14): 10-19. Jin Xianlin, Zhao Yingchun, Wu Gang.Space load forecasting of distribution network considering distributed PV and electric vehicle access[J]. Power System Protection and Control, 2019, 47(14): 10-19. [11] 时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11): 2298-2305. Shi Min, Xu Ke, Wang Jue, et al.Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2298-2305. [12] 彭政, 崔雪, 王恒, 等. 考虑储能和需求侧响应的微网光伏消纳能力研究[J]. 电力系统保护与控制, 2017, 45(22): 63-69. Peng Zheng, Cui Xue, Wang Heng, et al.Research on the accommodation of photovoltaic power considering storage system and demand response in microgrid[J]. Power System Protection and Control, 2017, 45(22): 63-69. [13] 周楠, 樊玮, 刘念, 等. 基于需求响应的光伏微网储能系统多目标容量优化配置[J]. 电网技术, 2016, 40(6): 1709-1716. Zhou Nan, Fan Wei, Liu Nian, et al.Battery storage multi-objective optimization for capacity configuration of PV-based microgrid considering demand response[J]. Power System Technology, 2016, 40(6): 1709-1716. [14] 李枫航, 唐波, 齐道坤, 等. 变电站内5G基站天线对二次设备的电磁干扰[J]. 南方电网技术, 2021, 15(10): 111-117. Li Fenghang, Tang Bo, Qi Daokun, et al.Electromagnetic interference from 5G base station antenna in substation on secondary equipment[J]. Southern Power System Technology, 2021, 15(10): 111-117. [15] 刘若桐, 李建林, 吕喆, 等. 退役动力电池应用潜力分析[J]. 电气技术, 2021, 22(8): 1-9. Liu Ruotong, Li Jianlin, Lü Zhe, et al.Application potential analysis of decommissioned power batteries[J]. Electrical Engineering, 2021, 22(8): 1-9. [16] 王硕. 移动边缘网络多维资源管理研究[D]. 北京: 北京邮电大学, 2019. [17] 吕婷, 张猛, 曹亘, 等. 5G基站节能技术研究[J]. 邮电设计技术, 2020(5): 46-50. Lü Ting, Zhang Meng, Cao Gen, et al.Research on energy saving technology of 5G base station[J]. Designing Techniques of Posts and Telecom-munications, 2020(5): 46-50. [18] 黄大为, 王孝泉, 于娜, 等. 计及光伏出力不确定性的配电网混合时间尺度无功/电压控制策略[J]. 电工技术学报, 2022, 37(17): 4377-4389. Huang Dawei, Wang Xiaoquan, Yu Na, et al.Hybrid timescale voltage/var control in distribution network considering PV power uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4377-4389. [19] 张华. 城市建筑屋顶光伏利用潜力评估研究[D]. 天津: 天津大学, 2017. [20] 陈登昭. 异构蜂窝网络下基站节能技术研究[D]. 长春: 吉林大学, 2016. [21] 雍培, 张宁, 慈松, 等. 5G通信基站参与需求响应:关键技术与前景展望[J]. 中国电机工程学报, 2021, 41(16): 5540-5552. Yong Pei, Zhang Ning, Ci Song, et al.5G communication base stations participating in demand response: key technologies and prospects[J]. Proceedings of the CSEE, 2021, 41(16): 5540-5552. [22] 麻秀范, 孟祥玉, 朱秋萍, 等. 计及通信负载的5G基站储能调控策略[J]. 电工技术学报, 2022, 37(11): 2878-2887. Ma Xiufan, Meng Xiangyu, Zhu Qiuping, et al.Control strategy of 5G base station energy storage considering communication load[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2878-2887. [23] 肖茂然. 含高渗透率分布式电源的配电网可靠性评估[D]. 济南: 山东大学, 2020. [24] 李达. 5G密集异构网络下的基站休眠技术研究[D]. 北京: 北京邮电大学, 2018. [25] 王晓云, 黄宇红, 崔春风, 等. C-RAN: 面向绿色的未来无线接入网演进[J]. 中国通信, 2010, 7(3): 107-112. Wang Xiaoyun, Huang Yuhong, Cui Chunfeng, et al.C-RAN: evolution toward green radio access network[J]. China Communications, 2010, 7(3): 107-112. [26] 麻秀范, 冯晓瑜. 考虑5G网络用电需求及可靠性的变电站双Q规划法[J].电工技术学报, 2023, 38(11): 2962-2976. Ma Xiufan, Feng Xiaoyu.Double Q planning method for substation considering power demand of 5G network and reliability[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2962-2976. [27] 李勇, 姚天宇, 乔学博, 等. 基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J]. 电工技术学报, 2022, 37(13): 3289-3303. Li Yong, Yao Tianyu, Qiao Xuebo, et al.Optimal configuration of distributed photovoltaic and energy storage system based on joint sequential scenario and source-network-load coordination[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3289-3303. [28] Sheng Min, Zhai Daosen, Wang Xijun, et al.Intelligent energy and traffic coordination for green cellular networks with hybrid energy supply[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 1631-1646. [29] 周童, 程方, 张治中, 等. 基于非泊松点过程建模的微基站部署研究[J]. 计算机应用研究, 2021, 38(12): 3730-3732, 3738. Zhou Tong, Cheng Fang, Zhang Zhizhong, et al.Pico base station deployment based on non-Poisson point process modeling[J]. Application Research of Computers, 2021, 38(12): 3730-3732, 3738.