Research on Urban Rail Transit Flexible Traction Power Systems and Optimal Control
Zhang Gang1,2, Hao Fengjie1,3, Wang Yunda1, Long Chiyu1, Li Menghe4
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. Beijing Engineering Research Center of Electric Rail Transportation Beijing 100044 China; 3. China Three Gorges Corporation Beijing 100038 China; 4. Nanning Rail Transit Corporation Nanning 530029 China
Abstract:In order to solve the problems of the traditional traction power supply system, such as the insufficient utilization of the regenerative energy of trains, the large fluctuation of DC power supply, the low power factor of AC network, a flexible traction power supply system scheme with the introduction of bidirectional converter is proposed. This paper introduces several typical working modes of flexible traction power supply system and the realization scheme of bidirectional substation. The key technologies such as bidirectional converter modeling, DC characteristic optimization and decentralized reactive compensation are studied. The hierarchical control structure of flexible power supply system is proposed to realize the flexible control of AC-DC hybrid system. The simulation model of urban rail flexible power supply system is established, and the system function and performance under typical application scenarios are verified, and the comprehensive optimization of the system is realized.
张钢, 郝峰杰, 王运达, 龙赤宇, 李梦和. 城轨柔性牵引供电系统及优化控制研究[J]. 电工技术学报, 2022, 37(zk1): 153-162.
Zhang Gang, Hao Fengjie, Wang Yunda, Long Chiyu, Li Menghe. Research on Urban Rail Transit Flexible Traction Power Systems and Optimal Control. Transactions of China Electrotechnical Society, 2022, 37(zk1): 153-162.
[1] 丁树奎, 韩志伟, 张钢, 等. 能馈式牵引供电原理及其在城市轨道交通中的应用[M]. 北京:北京交通大学出版社,2014. [2] 诸斐琴, 杨中平, 林飞, 等. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报, 2019, 34(3): 579-588. Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Synthetic optimization of traction power parameters and energy storage systems in urban rail transit[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 579-588. [3] 胡海涛, 王江峰, 何正友, 等. 地铁牵引供电系统交-直流潮流算法研究[J]. 铁道学报, 2012, 34(11): 22-28. Hu Haitao, Wang Jiangfeng, He Zhengyou, et al.Power flow algorithm study for metro traction supply system[J]. Journal of the China Railway Society, 2012, 34(11): 22-28. [4] 赵亚杰, 夏欢, 王俊兴, 等. 基于动态阈值调节的城轨交通超级电容储能系统控制策略研究[J]. 电工技术学报, 2015, 30(14): 427-433. Zhao Yajie, Xia Huan, Wang Junxing, et al.Research on dynamic threshold adjustment based control strategy of supercapacitor energy storage system in urban rail transit[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 427-433. [5] 刘炜, 娄颖, 张戬, 等. 计及城市轨道逆变回馈装置的交直流统一供电计算[J]. 电工技术学报, 2019, 34(20): 4381-4391. Liu Wei, Lou Ying, Zhang Jian, et al.Unified AC/DC power supply calculation taking into account urban rail inverter feedback devices[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4381-4391. [6] Suzuki T.DC power-supply system with inverting substations for traction systems using regenerative brakes[J]. IEE Proceedings B-Electric Power Applications, 1982, 129(1): 18-26. [7] 夏欢, 杨中平, 杨志鸿, 等. 基于列车运行状态的城轨超级电容储能装置控制策略[J]. 电工技术学报, 2017, 32(21): 16-23. Xia Huan, Yang Zhongping, Yang Zhihong, et al.Control strategy of supercapacitor energy storage system for urban rail transit based on operating status of trains[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 16-23. [8] 廖钧. 城市轨道供电系统无功补偿方案研究[D]. 成都: 西南交通大学, 2017. [9] Varma R, Khadkikar V, Seethapathy R.Nighttime application of PV solar farm as STATCOM to regulate grid voltage[J]. IEEE Transactions on Energy Conversion, 2009, 24(4): 983-985. [10] Turitsyn K, Sulc P, Backhaus S, et al.Options for control of reactive power by distributed photovoltaic generators[J]. Proceedings of the IEEE, 2011, 99(6): 1063-1073. [11] Rouzbehi K, Miranian A, Luna A, et al.DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(4): 1171-1180. [12] Beerten J, Cole S, Belmans R.Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms[J]. IEEE Transactions on Power Systems, 2012, 27(2): 821-829. [13] Zhang Gang, Tian Zhongbei, Tricoli P, et al.Inverter operating characteristics optimization for DC traction power supply systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3400-3410. [14] 刘志刚, 郝峰杰, 陈杰, 等. 城轨牵引供电系统车-地配合参数优化方法[J]. 北京交通大学学报, 2019, 43(1): 79-87. Liu Zhigang, Hao Fengjie, Chen Jie, et al.Optimization method of train-ground coordination parameters for urban traction power supply system[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 79-87. [15] Karki U, Gunasekaran D, Peng Fangzheng.Reactive compensation of overhead ac transmission lines using underground power cables[C]//IEEE Power & Energy Society General Meeting, Denver, 2015: 1-5. [16] Cao Jun, Du Wenjuan, Wang Haifeng, et al.Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3047-3055. [17] Arboleya P, Mohamed B, El-Sayed I.DC railway simulation including controllable power electronic and energy storage devices[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5319-5329. [18] Coto M, Arboleya P, Gonzalez-Moran C.Optimization approach to unified AC/DC power flow applied to traction systems with catenary voltage constraints[J]. International Journal of Electrical Power & Energy Systems, 2013, 53: 434-441.