[1] Christophorou L G, Olthoff J K, Brunt R J V. Sulfur hexafluoride and the electric power industry[J]. IEEE Electrical Insulation Magazine, 1997, 13(5): 20-24.
[2] 齐波, 张贵新, 李成榕, 等. 气体绝缘金属封闭输电线路的研究现状及应用前景[J]. 高电压技术, 2015, 41(5): 1466-1473.Qi Bo, Zhang Guixin, Li Chengrong, et al. Research status and prospect of gas-insulated metal enclosed transmission line[J]. High Voltage Engineering, 2015, 41(5): 1466-1473.
[3] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893.Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al. A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893.
[4] 李鑫涛, 林莘, 徐建源, 等. SF6/N2混合气体电击穿特性仿真及实验[J]. 电工技术学报, 2017, 32(20): 42-52.Li Xintao, Lin Xin, Xu Jianyuan, et al. Simulations and experiments of dielectric breakdown characteri- stics in SF6/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 42-52.
[5] 邓云坤, 马仪, 赵谡, 等. 基于电子输运参数的CF3I及CF3I-N2混合气体绝缘性能分析[J]. 电工技术学报, 2018, 33(7): 1641-1651.Deng Yunkun, Ma Yi, Zhao Su, et al. Analysis of the insulation properties of CF3I and CF3I-N2 gas mixtures from electron transport parameters[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1641-1651.
[6] 颜湘莲, 王承玉, 季严松, 等. 气体绝缘设备中SF6气体分解产物与设备故障关系的建模[J]. 电工技术学报, 2015, 30(22): 231-238.Yan Xianglian, Wang Chengyu, Ji Yansong, et al. Modeling of the relation between SF6 decomposition products and interior faults in gas insulated equipment[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 231-238.
[7] Chen L, Widger P, Kamarudin M S, et al.CF3I gas mixtures: breakdown characteristics and potential for electrical insulation[J]. IEEE Transactions on Power Delivery, 2017, 32(2): 1089-1097.
[8] Zhao H, Li X, Lin H.Insulation characteristics of c-C4F8/N2 and CF3I/N2 mixtures as possible sub- stitutes for SF6[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 254-262.
[9] 肖淞, 张晓星, 韩晔飞, 等. 不均匀电场下CF3I/N2混合气体工频击穿特性实验[J]. 电工技术学报, 2016, 31(20): 228-236.Xiao Song, Zhang Xiaoxing, Han Yefei, et al. Experiment on power frequency puncture of CF3I/N2 gas mixtures in non-uniform electric fields[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 228-236.
[10] Qiu Y, Kuffel E.Dielectricc strength of gas mixtures comprising SF6/CO2/c-C4F8 and SF6/N2/c-C4F8[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(5): 1445-1451.
[11] Kieffel Y, Biquez F.SF6 alternative development for high voltage switchgears[C]//33rd IEEE Electrical Insulation Conference, Seattle, 2015: 379-383.
[12] Kieffel Y, Biquez F, Vigouroux D, et al.Characteri- stics of g3-an alternative to SF6[J]. CIRED-Open Access Proceedings Journal, 2017(1): 54-57.
[13] Wang C L, Wu Y, Sun H, et al.Thermophysical properties calculation of C4F7N/CO2 mixture based on computational chemistry—a theoretical study of SF6 alternative[C]//4th International Conference on Electric Power Equipment, Xi’an, 2017: 255-258.
[14] Nechmi H E, Beroual A, Girodet A, et al.Effective ionization coefficients and limiting field strength of fluoronitriles-CO2 mixtures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 886-892.
[15] Nechmi H E, Beroual A, Girodet A, et al.Fluoroni- triles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2587-2593.
[16] Nechmi H E, Beroual A, Girodet A, et al.Fluoronitriles/CO2 gas mixture as an eco-friendly alternative candidate to SF6 in high voltage insulation systems[C]//2016 IEEE Conference on Insulation and Dielectric Phenomena, Toronto, 2016: 384-387.
[17] 张乔根, 游浩洋, 马径坦, 等. 直流电压下SF6中自由线形导电微粒运动特性[J]. 高电压技术, 2018, 44(3): 696-703.Zhang Qiaogen, You Haoyang, Ma Jingtan, et al. Motion behavior of free conducting wire-type particles in SF6 gas under DC voltage[J]. High Voltage Engineering, 2018, 44(3): 696-703.
[18] 贾江波, 查玮, 杨连殿, 等. 直流电压下绝缘子附近球形导电微粒运动起始电压研究[J]. 西安交通大学学报, 2006, 40(6): 699-703.Jia Jiangbo, Zha Wei, Yang Liandian, et al. Threshold voltage of spherical conducting particle motion near spacer in inhomogeneous electric field[J]. Journal of Xi’an Jiaotong University, 2006, 40(6): 699-703.
[19] 王健, 李伯涛, 李庆民, 等. 直流GIL中线性金属微粒对柱式绝缘子表面电荷积聚的影响[J]. 电工技术学报, 2016, 31(15): 213-222.Wang Jian, Li Botao, Li Qingmin, et al. Impact of linear metal particle on surface charge accumulation of post insulator within DC GIL[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 213-222.
[20] 律方成, 刘宏宇, 李志兵, 等. 直流电压下SF6气体中电极覆膜对金属微粒启举的影响机理[J]. 电工技术学报, 2017, 32(13): 239-247.Lü Fangcheng, Liu Hongyu, Li Zhibing, et al. Influence mechanism of dielectric coated electrodes on metallic particle lift-off in SF6 gas under DC voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 239-247.
[21] 李庆民, 王健, 李伯涛, 等. GIS/GIL中金属微粒污染问题研究进展[J]. 高电压技术, 2016, 42(3): 849-860.Li Qingmin, Wang Jian, Li Botao, et al. Review on metal particle contamination in GIS/GIL[J]. High Voltage Engineering, 2016, 42(3): 849-860.
[22] Wang Jian, Li Qingmin, Li Botao, et al.Theoretical and experimental studies of the air gap breakdown triggered by a free spherical conducting particle in DC uniform field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 1951-1958.
[23] 肖淞, 张晓星, 周倩, 等. 不同类型自由金属微粒对SF6绝缘特性的影响[J]. 中国电机工程学报, 2018, 38(5): 1582-1591.Xiao Song, Zhang Xiaoxing, Zhou Qian, et al. Influence of different types of free metal particles on the properties of SF6 insulation[J]. Proceedings of the CSEE, 2018, 38(5): 1582-1591.
[24] Hosokawa M, Endo F, Yamagiwa T, et al.Particle- initiated breakdown characteristics and reliability improvement in SF6 gas insulation[J]. IEEE Transactions on Power Delivery, 1986, 1(1): 58-65.
[25] 李敏, 汪沨, 许松枝, 等. 基于分形理论的SF6/N2混合气体放电仿真[J]. 电工技术学报, 2016, 31(24): 88-95.Li Min, Wang Feng, Xu Songzhi, et al. Simulation of discharge in SF6/N2 gas mixtures based on fractal theory[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 88-95.
[26] Ward S A.Optimum SF6-N2, SF6-air, SF6-CO2 mixtures based on particle contamination[C]// Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, Anaheim, 2000: 292-295.
[27] 雷鸣, 陈琳. 关于GIL和GIS母线产品基本结构尺寸设计探讨[J]. 高压电器, 2013, 49(4): 128-133.Lei Ming, Chen Lin. Discusses on basic structure design of GIL and GIS busbar[J]. High Voltage Apparatus, 2013, 49(4): 128-133.
[28] 黎斌. SF6高压电器设计[M]. 北京: 机械工业出版社, 2010.
[29] 王璁, 屠幼萍, 罗颜, 等. 应用于直流GIL中环境友好型气体的绝缘性能研究[J]. 中国电机工程学报, 2016, 36(24): 6711-6717.Wang Cong, Tu Youping, Luo Yan, et al. Insulation performance of environmentally friendly gas applied to HVDC-GIL[J]. Proceedings of the CSEE, 2016, 36(24): 6711-6717.
[30] 李冰, 肖登明, 赵谡, 等. 第二代气体绝缘输电线路的温升数值计算[J]. 电工技术学报, 2017, 32(13): 271-276.Li Bing, Xiao Dengming, Zhao Su, et al. Temperature rise numerical calculation of the second generation gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 271-276.
[31] 李旭东, 周伟, 屠幼萍, 等. 0.1~0.25MPa气压下二元混合气体SF6-N2和SF6-CO2的击穿特性[J]. 电网技术, 2012, 36(4): 260-264.Li Xudong, Zhou Wei, Tu Youping, et al. Breakdown characteristics of binary gas mixtures SF6-N2 and SF6-CO2 under 0.1~0.25MPa atmosphere pressures[J]. Power System Technology, 2012, 36(4): 260-264.
[32] Dengming Xiao.Gas discharge and gas insulation[M]. Shanghai: Shanghai Jiao Tong University Press, 2017: 243-257.
[33] Sakai K, Tsuru S, Abella D L, et al.Conducting particle motion and particle-initiated breakdown in dc electric field between diverging conducting plates in atmospheric air[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(1): 122-130.
[34] Cooke C M, Wootton R E, Cookson A H, et al.Influence of particles on AC and DC electrical performance of gas insulated systems at extra- high-voltage[J]. IEEE Transactions on Power Apparatus and Systems, 1977, 96(3): 768-777.
[35] Rizk F A, Masetti C, Comsa R P, et al.Particle- initiated breakdown in SF6 insulated systems under high direct voltage[J]. IEEE Transactions on Power Apparatus and Systems, 1979, 98(3): 825-836. |