The surface charge accumulation on the basin insulators is the main reason for the long-term operation of DC gas insulated metal-enclosed transmission line (DC-GIL). It is an effective measure to improve the electric field distribution by coating the insulator surface. There are many repetitive tests for designing composite coating materials. In this paper, based on the molecular dynamics simulation method, nanoparticles were designed and doped in a targeted way. Epoxy resin and four kinds of carbon nanotubes (uncapped, semi-capped, all-capped, and amido-amine functionalized) composite models were established. According to the models, the vital physical properties including mechanical properties, dielectric constant, thermal diffusivity (thermal conductivity, specific heat capacity), and glass transition temperature were calculated under LAMMPS. The results show that the physical properties of the epoxy composites can be enhanced by doping the carbon nanotubes. The composites doped with amido-amine functionalized carbon nanotubes show the most obvious improvement in mechanical properties, dielectric constant and thermal diffusivity, including inhibition of the damage of temperature rise to mechanical properties, reduction of the dielectric constant reduced by 24.8% and the increase of thermal diffusivity by 96.98%. The composites doped with all-capped carbon nanotubes only maximize the glass transition temperature of 25.7K, while the other properties are not significantly improved. In terms of the computed results, it is concluded that the selection of amido-amine functionalized carbon nanotubes as the doped particles of epoxy resin is more suitable for the suppression of surface charge accumulation in practical engineering.
韩智云, 邹亮, 辛喆, 赵彤, 张黎. 直流GIL绝缘子环氧树脂/碳纳米管复合涂层关键物理性能的分子动力学模拟[J]. 电工技术学报, 2018, 33(20): 4692-4703.
Han Zhiyun, Zou Liang, Xin Zhe, Zhao Tong, Zhang Li. Molecular Dynamics Simulation of Vital Physical Properties of Epoxy/Carbon Nanotube Composite Coatings on DC GIL Insulators. Transactions of China Electrotechnical Society, 2018, 33(20): 4692-4703.
[1] 张冬海, 张晖, 张忠, 等. 纳米技术在高性能电力复合绝缘材料中的工程应用[J]. 中国科学: 化学, 2013, 43(6): 725-743. Zhang Donghai, Zhang Hui, Zhang Zhong, et al. Industry applications of nanotechnology in high performance insulation composites[J]. Scientia Sinica Chimica, 2013, 43(6): 725-743.
[2] 鲁杨飞, 李庆民, 刘涛, 等. 高频电压下表面电荷分布对沿面放电发展过程的影响[J].电工技术学报, 2018, 33(13): 3059-3070.Lu Yangfei, Li Qingmin, Liu Tao, et al. Effect of surface charge on the surface discharge evolution for polyimide under high frequency voltage[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(13): 3059-3070.
[3] 王健, 李伯涛, 李庆民, 等. 直流GIL中线形金属微粒对柱式绝缘子表面电荷积聚的影响[J]. 电工技术学报, 2016, 31(15): 213-222.Wang Jian, Li Botao, Li Qingmin, et al. Impact of linear metal particle on surface charge accumulation of post insulator within DC GIL[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 213-222.
[4] Volpov E K.Dielectric strength coordination and generalized spacer design rules for HVAC/DC SF6 gas insulated systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(6): 949-963.
[5] 贾志杰, 张斌, 范建斌, 等. 直流气体绝缘金属封闭输电线路中绝缘子的表面电荷积聚研究[J]. 中国电机工程学报, 2010, 30(4): 112-117.Jia Zhijie, Zhang Bin, Fan Jianbin, et al. Study of charge accumulation along the insulator surface in the DC GIL[J]. Proceedings of the CSEE, 2010, 30(4): 112-117.
[6] 唐炬, 潘成, 王邸博, 等. 高压直流绝缘材料表面电荷积聚研究进展[J]. 电工技术学报, 2017, 32(8): 10-21.Tang Ju, Pan Cheng, Wang Dibo, et al. Development of studies about surface charge accumulation on insulating material under HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 10-21.
[7] 汤浩, 吴广守, 范建斌, 等. 直流气体绝缘输电线路的绝缘设计[J]. 电网技术, 2008, 32(6): 65-70.Tang Hao, Wu Guangning, Fan Jianbin, et al. Insulation design of gas insulated HVDC trans- mission line[J]. Power System Technology, 2008, 32(6): 65-70.
[8] 吕程, 廖瑞金, 吴伟强, 等. 纳米TiO2对油纸绝缘介质直流空间电荷特性的影响[J]. 高电压技术, 2015, 41(2): 417-423.Lü Cheng, Liao Ruijin, Wu Weiqiang, et al. Influence of nano-TiO2 on DC space charge characteristics of oil-paper insulation material[J]. High Voltage Engineering, 2015, 41(2): 417-423.
[9] 刘志民, 邱毓昌, 冯允平. 对绝缘子表面电荷积聚机理的讨论[J]. 电工技术学报, 1999, 14(2): 65-68.Liu Zhimin, Qiu Yuchang, Feng Yunping. The discussion about accumulation mechanism of surface charge on insulating spacer[J]. Transactions of China Electrotechnical Society, 1999, 14(2): 65-68.
[10] Straumann U, Schüller M, Franck C M.Theoretical investigation of HVDC disc space charging in SF6 gas insulated systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(6): 2196-2205.
[11] Gremaud R, Molitor F, Doiron C, et al.Solid insulation in DC gas-insulated systems[R]. Paris, France: CIGRE, 2014.
[12] Imai T, Sawa F, Nakano T, et al.Effects of nano-and micro-filler mixture on electrical insulation properties of epoxy based composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(2): 319-326.
[13] 杜伯学, 侯兆豪, 徐航, 等. 高压直流电缆绝缘用聚丙烯及其纳米复合材料的研究进展[J]. 高电压技术, 2017, 43(9): 2769-2780.Du Boxue, Hou Zhaohao, Xu Hang, et al. Research achievements in polypropylene and polypropylene/ inorganic nanocomposites for HVDC cable insu- lation[J]. High Voltage Engineering, 2017, 43(9): 2769-2780.
[14] 杜伯学, 孔晓晓, 肖萌, 等. 高导热聚合物基复合材料研究进展[J]. 电工技术学报, 2018, 33(14): 3149-3159.Du Boxue, Kong Xiaoxiao, Xiao Meng, et al. Advances in thermal performance of polymer-based composites[J]. Transactions of China Electro- technical Society, 2018, 33(14): 3149-3159.
[15] Kinloch A J, Mohammed R D, Taylor A C, et al.The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers[J]. Journal of Materials Science, 2005, 40(18): 5083-5086.
[16] Blackman B R K, Kinloch A J, Lee J S, et al. The fracture and fatigue behaviour of nano-modified epoxy polymers[J]. Journal of Materials Science, 2007, 42(16): 7049-7051.
[17] Tsai J L, Hsiao H, Cheng Y L.Investigating mechanical behaviors of silica nanoparticle reinforced composites[J]. Journal of Composite Materials, 2010, 44(4): 505-524.
[18] 李庆民, 黄旭炜, 刘涛, 等. 分子模拟技术在高电压绝缘领域的应用进展[J]. 电工技术学报, 2016, 31(12): 1-13.Li Qingmin, Huang Xuwei, Liu Tao, et al. Application progresses of molecular simulation methodology in the area of high voltage insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 1-13.
[19] 张晓星, 陈霄宇, 肖淞, 等. 改性SiO2增强环氧树脂热力学性能的分子动力学模拟[J]. 高电压技术, 2018, 44(3): 740-749.Zhang Xiaoxing, Chen Xiaoyu, Xiao Song, et al. Molecular dynamics simulation of thermal-mechanical properties of modified SiO2 reinforced epoxy resin[J]. High Voltage Engineering, 2018, 44(3): 740-749.
[20] 刘利珍, 谢庆, 梁少栋, 等. 分子数对交联环氧树脂体系特性影响的分子动力学模拟[J]. 高压电器, 2018(5): 80-86.Liu Lizhen, Xie Qing, Liang Shaohe, et al. Molecular dynamics simulation of the influence of molecular number on the properties of cross-linked epoxy resin system[J]. High Voltage Apparatus, 2018(5): 80-86.
[21] 张世良, 戚力, 高伟, 等. 分子模拟中常用的结构分析与表征方法综述[J]. 燕山大学学报, 2015, 39(3): 213-220.Zhang Shiliang, Qi Li, Gao Wei, et al. Summary of methods for structural analysis and characterization in molecular modeling[J]. Journal of Yanshan University, 2015, 39(3): 213-220.
[22] Sun H, Jin Z, Yang C, et al.COMPASS II: extended coverage for polymer and drug-like molecule databases[J]. Journal of molecular modeling, 2016, 22(2): 47.
[23] Wu C, Xu W.Atomistic molecular modelling of crosslinked epoxy resin[J]. Polymer, 2006, 47(16): 6004-6009.
[24] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
[25] Jiang D, Van Duin A C T, Goddard III W A, et al. Simulating the initial stage of phenolic resin carbonization via the ReaxFF reactive force field[J]. The Journal of Physical Chemistry A, 2009, 113(25): 6891-6894.
[26] Neumann M.Dipole moment fluctuation formulas in computer simulations of polar systems[J]. Molecular Physics, 1983, 50(4): 841-858.
[27] Lide D R, David R.CRC Handbook of Chemistry and Physics[M]. Boca Raton, FL: CRC Press 2760pp, 1990.
[28] Jund P, Jullien R.Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Physical Review B, 1999, 59(21): 13707.
[29] Müller-Plathe F.A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. The Journal of Chemical Physics, 1997, 106(14): 6082-6085.
[30] Green M S.Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids[J]. The Journal of Chemical Physics, 1954, 22(3): 398-413.
[31] Kubo R.Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems[J]. Journal of the Physical Society of Japan, 1957, 12(6): 570-586.
[32] Fan Z, Pereira L F C, Wang H Q, et al. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations[J]. Physical Review B, 2015, 92(9): 094301.
[33] Hoover W G.Computational statistical mechanics[M]. Elsevier, 2012.
[34] Giang T, Park J, Cho I, et al.Effect of backbone moiety in epoxies on thermal conductivity of epoxy/alumina composite[J]. Polymer Composites, 2013, 34(4): 468-476.
[35] Qiao G, Lasfargues M, Alexiadis A, et al.Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522.
[36] Fan Z, Hirvonen P, Pereira L F C, et al. Bimodal grain-size scaling of thermal transport in polycrystalline graphene from large-scale molecular dynamics simulations[J]. Nano letters, 2017, 17(10): 5919-5924.
[37] 郭亚林, 梁国正, 丘哲明, 等. 碳纤维/有机硅改性环氧树脂复合材料性能研究[J]. 材料工程, 2004, 9: 42-44.Guo Yalin, Liang Guozheng, Qiu Zheming, et al. Properties of carbon fiber/silicone modified epoxy composite[J]. Journal of Materials Engineering, 2004(9): 42-44.
[38] 吴超富. 交联环氧树脂的分子模拟研究[D]. 长沙: 湖南大学, 2007.
[39] 郝留成, 杨保利, 田浩, 等. 特高压盆式绝缘子工艺技术研究[J]. 绝缘材料, 2014, 47(5): 45-49.Hao Liucheng, Yang Baoli, Tian Hao, et al. Study of process technology of UHV basin insulator[J]. Insulating Materials, 2014, 47(5): 45-49.
[40] Li C, Strachan A.Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA[J]. Polymer, 2011, 52(13): 2920-2928.
[41] Williams M L, Landel R F, Ferry J D.The tem- perature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical society, 1955, 77(14): 3701-3707.