Comparative Study on the Performance of Itaconic Acid Based Epoxy Resin and Bisphenol A Epoxy Resin
Liu Hechen1, Guo Zhanpeng1, Li Yan1, Zhou Songsong2, Wu Xuan1
1. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China; 2. China Electric Power Research Institute Beijing 100192 China
Abstract:In this paper, in order to explore the application prospects of environmental-friendly bio-based epoxy resins in the electrical field, the advantages and disadvantages of itaconic acid-based epoxy resin (EIA), a bio-based resin, were compared with bisphenol A epoxy resin (DGEBA) in terms of physical and chemical parameters, heat resistance, mechanical properties, and electrical insulation properties. The results show that the epoxy equivalent of EIA is close to that of DGEBA, and both resins have typical viscosity-temperature characteristics, and the rheological properties of EIA are slightly better than that of DGEBA, ensuring its processability; the glass transition temperature and 5% thermal cracking temperature of EIA curing system are lower than DGEBA respectively; the breakdown voltage of EIA curing system (32.1kV/mm) is slightly lower than DGEBA (36.7kV/mm), while the leakage current is about 13.4% higher than that of DGEBA, indicating that the electrical insulation performance of EIA is slightly weaker than that of DGEBA; the mechanical performance test shows that the tensile strength and flexural strength of EIA curing system are 15.3% and 28.5% lower than that of DGEBA respectively. At the same time, the water absorption of EIA curing system is slightly higher than DGEBA and has strong high-temperature hydrolysis ability, which may limit its outdoor application prospects; In summary, as a matrix resin, EIA is inferior to DGEBA in terms of mechanics, thermo stability, and electrical strength due to the influence of crosslink density and intramolecular ester bonds. However, the heat resistance and viscosity properties are similar, and EIA is more excellent in terms of degradability and environmental protection, etc. In the later stage, its performance can be improved by increasing the degree of crosslinking and blending with other types of epoxy resins such as bisphenol A.
刘贺晨, 郭展鹏, 李岩, 周松松, 吴璇. 衣康酸基环氧树脂和双酚A环氧树脂性能对比研究[J]. 电工技术学报, 2022, 37(9): 2366-2376.
Liu Hechen, Guo Zhanpeng, Li Yan, Zhou Songsong, Wu Xuan. Comparative Study on the Performance of Itaconic Acid Based Epoxy Resin and Bisphenol A Epoxy Resin. Transactions of China Electrotechnical Society, 2022, 37(9): 2366-2376.
[1] Huang Zhengyong, Li Jian, Yao Wei, et al.Electrical and thermal properties of insulating oil-based nanofluids: a comprehensive overview[J]. IET Nanodielectrics, 2019, 2(1): 27-40. [2] 陈江波, 王飞鹏, 蔡胜伟, 等. 变压器植物、矿物绝缘油的微生物降解机制及差异[J]. 重庆大学学报, 2018, 41(2): 61-68. Chen Jiangbo, Wang Feipeng, Cai Shengwei, et al.Microbial degradation mechanism and difference of transformer plant and mineral insulating oil[J]. Journal of Chongqing University, 2018, 41(2): 61-68. [3] 李剑, 姚舒瀚, 杜斌, 等. 植物绝缘油及其应用研究关键问题分析与展望[J]. 高电压技术, 2015, 41(2): 353-363. Li Jian, Yao Shuhan, Dubin, et al. Analysis and prospect of key issues in research on plant insulating oil and its application[J]. High Voltage Engineering, 2015, 41(2): 353-363. [4] 高克利, 颜湘莲, 刘焱, 等. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1): 3-12. Gao Keli, Yan Xianglian, Liu Yan, et al.Research progress of environmental protection gas insulated pipeline technology[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 3-12. [5] 张晓星, 陈琪, 张季, 等. 高气压下环保型C4F7N/CO2混合气体工频击穿特性[J]. 电工技术学报, 2019, 34(13): 2839-2845. Zhang Xiaoxing, Chen Qi, Zhang Ji, et al.Power frequency breakdown characteristics of environmental-friendly C4F7N/CO2 gas mixtures under high pressure conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2839-2845. [6] 何金良, 彭琳, 周垚. 环保型高压直流电缆绝缘材料研究进展[J]. 高电压技术, 2017, 43(2): 337-343. He Jinliang, Peng Lin, Zhou Yao, et al.Review on research progress of high voltage DC cable insulation materials[J]. High Voltage Engineering, 2017, 43(2): 337-343. [7] Du B X, Hou Z H, Li Z L, et al.Temperature dependent space charge and breakdown strength of PP/ULDPE/graphene nanocomposites for HVDC extruded cable insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 876-884. [8] 周得军, 鲍建东, 荣广平, 等. 静态混料真空浇注工艺在互感器生产中的应用[J]. 变压器, 2020(6): 14-18. Zhou Dejun, Bao Jiandong, Rong Guangping, et al.Application of static mixing vacuum pouring technology in the production of transformers[J]. Transformer, 2020(6): 14-18. [9] 李进, 王雨帆, 杜伯学, 等. 高压电工装备用环氧树脂绝缘材料改性研究进展[J]. 广东电力, 2019, 32(12): 1-11. Li Jin, Wang Yufan, Du Boxue, et al.Research progress of modification of epoxy resin insulation materials for high voltage electrical equipment[J]. Guangdong Electric Power, 2019, 32(12): 1-11. [10] Chrysanthos M, Galy J, Pascault J P.Preparation and properties of bio-based epoxy networks derived from isosorbide diglycidyl ether[J]. Polymer, 2011, 52(16): 3611-3620. [11] Flint S, Markle T, Thompson S, et al.Bisphenol a exposure, effects, and policy: a wildlife perspective[J]. Journal of Environmental Management, 2012, 104: 19-34. [12] Benyahya S, Aouf C, Caillol S, et al.Functionalized green tea tannins as phenolic prepolymers forbio-based epoxy resins[J]. Industrial Crops & Products, 2014, 53: 296-307. [13] Ding C, Matharu A S.Recent developments on biobased curing agents: a review of their preparation and use[J]. Acs Sustainable Chemistry, 2014, 2(10): 2217-2236. [14] Shelby Flint, Tricia Markle, Sarah Thompson, et al.Recent development of biobased epoxy resins: a review[J]. Polymer Plastics Technology & Engineering, 2018, 57(3): 133-135. [15] Ramon E, Sguazzo C, Moreira P M G P. A review of recent research on bio-based epoxy systems for engineering applications and potentialities in the aviation sector[J]. Aerospace, 2018, 5(4): 110-144. [16] 黄文. 高性能生物基环氧树脂及其固化剂的合成、表征与性能研究[D]. 南昌: 南昌大学, 2011. [17] Fatemeh Ferdosian, Yuan Zhongshun, Mark Anderson, et al.Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins[J]. European Polymer Journal, 2016, 82: 153-165. [18] Atta A M, Mansour R, Abdou M I, et al.Epoxy resins from rosin acids: synthesis and characterization[J]. Polymers for Advanced Technologies, 2004, 15(9): 514-522. [19] Huang H Y, Cheng-Yong H A, Yin-Wen L I, et al. Synthesis of brominating acrylic rosin epoxy resin and flame retardation of the curing product[J]. Polymer Materials Science & Engineering, 2009, 25(6): 28-31. [20] Wang Honghua, Liu Xiaoqing, Liu Bo, et al.Synthesis of rosin-based flexible anhydride-type curing agents and properties of the cured epoxy[J]. Polymer International, 2009, 58(12): 1435-1441. [21] Zhang Hailong, Quan Ling, Gao Aijun, et al.Thermal analysis and crystal structure of poly(acrylonitrile-co-itaconic acid) copolymers synthesized in water[J]. Polymers, 2020, 12(1): 221. [22] Okabe M, Lies D, Kanamasa S, et al.Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus[J]. Applied Microbiology & Biotechnology, 2009, 84(4): 597-606. [23] Yang Qinou, Cheng Lu, Wang Haojing, et al.Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile[J]. Polymer Degradation and Stability, 2008, 93(8): 1415-1421. [24] 王润国, 周鑫鑫, 雷巍巍, 等. 衣康酸的制备及其在高分子材料中的应用[J]. 中国材料进展, 2012, 31(12): 48-52. Wang Yunguo, Zhou Xinxin, Lei Weiwei, et al.The preparation of itaconic acid and its application in polymer materials[J]. Materials China, 2012, 31(12): 48-52 [25] Ma Songqi, Liu Xiaoqing.Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers[J]. Green Chemistry, 2013, 15: 245-254. [26] Ma Songqi, Liu Xiaoqing, Jiang Yanhua, et al.Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid[J]. Science China-Chemistry, 2014, 57(3): 379-388. [27] 江艳华, 徐克彬, 周涛, 等. 衣康酸基环氧树脂降解性能的研究[J]. 粘接, 2016, 37(8): 46-48. Jiang Yanhua, Xu Kebin, Zhou Tao, et al.Study on the degradation performance of itaconic acid-based epoxy resin[J]. Adhesion, 2016, 37(8): 46-48. [28] 张飞鹏. 普通硅酸盐工业玻璃的粘度温度关系的计算及其实用意义[J]. 玻璃, 1978(3): 36-41. Zhang Feipeng.Calculation of viscosity temperature relationship of common silicate industrial glass and its practical significance[J]. Glass, 1978(3): 36-41. [29] 欧风编. 石油产品应用技术[M]. 北京: 中国石化出版社, 1998. [30] He Ziming, Shen Aiqin, Guo Yinchuan, et al.Cement-based materials modified with superabsorbent polymers: a review[J]. Construction and Building Materials, 2019, 225: 569-590. [31] 隽志立, 吴鹏, 王士凡, 等. 烷基与酯基的引入对高吸水性树脂吸液性能的影响[J]. 合成树脂及塑料, 2020, 37(2): 36-39. Jun Zhili, Wu Peng, Wang Shifan, et al.Influence of the introduction of alkyl and ester groups on the liquid absorption performance of super absorbent resin[J]. China Synthetic Resin and Plastics, 2020, 37(2): 36-39. [32] MatthiasWagner. 热分析应用基础[M]. 上海: 东华大学出版社, 2011. [33] Khosravi E, Musa O M.Thermally degradable thermosetting materials[J]. European Polymer Journal, 2011, 47(4): 465-473. [34] 蔡宏洋, 李刚, 刘海洋, 等. 柔性胺T403对环氧树脂体系力学性能及交联密度的影响[J]. 玻璃钢/复合材料, 2009(1): 38-41. Cai Hongyang, Li Gang, Liu Haiyang, et al.The effect of flexible amine T403 on the mechanical properties and crosslinking density of epoxy resin system[J]. Fiber Reinforced Plastics/Composites, 2009(1): 38-41. [35] 律方成, 詹振宇, 张立国, 等. 等离子体氟化改性微米AlN填料对环氧树脂绝缘性能的影响[J]. 电工技术学报, 2019, 34(16): 3522-3531. Lü Fangcheng, Zhan Zhenyu, Zhang Liguo, et al.Effect of plasma fluorination modified micron AlN filler on the insulation performance of epoxy resin[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3522-3531. [36] 蔡凡一, 薛健, 周柏杰, 等. 吸水性对中压绝缘用尼龙66电气性能的影响[J]. 工程塑料应用, 2015, 43(11): 87-90. Cai Fanyi, Xue Jian, Zhou Bojie, et al.The influence of water absorption on the electrical properties of nylon 66 for medium voltage insulation[J]. Engineering Plastics Applications, 2015, 43(11): 87-90. [37] 刘东明, 李学宝, 顼佳宇, 等. 高压SiC器件封装用有机硅弹性体高温宽频介电特性分析[J/OL]. 电工技术学报, DOI: 10.19595/ j.cnki.1000-6753.tces. 201088. Liu Dongming, Li Xuebao, Xu Jiayu, et al.Analysis of high temperature and broadband dielectric properties of silicone elastomer for high voltage SiC device packagingg[J/OL]. Transactions of China Electrotechnical Society, DOI: 10.19595/ j.cnki.1000 -6753.tces.201088. [38] 马丽. PVDF/无机粉体复合铁电薄膜的制备及介电性能研究[D]. 上海: 上海师范大学, 2011. [39] 范贤浩, 刘捷丰, 张镱议, 等. 融合频域介电谱及支持向量机的变压器油浸纸绝缘老化状态评估[J]. 电工技术学报, 2021, 36(10): 2161-2168. Fan Xianhao, Liu Jiefeng, Zhang Jingyi, et al.Evaluation of transformer oil-impregnated paper insulation aging state based on frequency domain dielectric spectrum and support vector machine[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2161-2168. [40] 张大宁, 刘孝为, 詹江杨, 等.变压器油纸绝缘频域介电谱的虚部分析[J]. 电工技术学报, 2019, 34(4): 847-854. Zhang Daning, Liu Xiaowei, Zhan Jiangyang, et al.Analysis of imaginary part of dielectric spectrum in frequency domain for transformer oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 847-854. [41] 范仰才, 李景德, 刁胜方. 电介质物理[J]. 物理与工程, 1994(2): 3-6. Fan Yangcai, Li Jinde, Diao Shengfang.Dielectric physics[J]. Physicsand Engineering, 1994(2): 3-6. [42] 杨国清, 黎洋, 王德意, 等. 超支化聚酯改性纳米SiO_2/环氧树脂的介电特性[J]. 电工技术学报, 2019, 34(5): 1106-1115. Yang Guoqing, Li Yang, Wang Deyi, et al.Dielectric properties of hyperbranched polyester modified nano-SiO_2/epoxy resin[J]. Transactions of China Electrotechnical Society, 2019, 34(5):1106-1115. [43] 倪潇茹, 王健, 王靖瑞, 等. 碳纳米管对环氧树脂复合介质电-热裂解特性的微观调控模拟[J]. 电工技术学报, 2018, 33(22): 5159-5167. Ni Xiaoru, Wang Jian, Wang Jingrui, et al.Micro-control simulation of carbon nanotubes on the electro-thermal cracking properties of epoxy resin composite dielectrics[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5159-5167. [44] 谢伟, 杨征, 程显, 等. 环氧树脂材料热氧老化特性研究[J]. 电工技术学报, 2020, 35(20): 4397-4404. Xie Wei, Yang Zheng, Cheng Xian, et al.Study on thermal oxygen aging characteristics of epoxy material[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4397-4404.