Progress of Technology for Environment-Friendly Gas Insulated Transmission Line
Gao Keli1, Yan Xianglian1, Liu Yan1, Wang Baoshan2, Hu Shizhuo2, Li Zhichuang3
1. State Key Laboratory of Power Grid Environmental Protection China Electric Power Research Institute Beijing 100192 China; 2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 3. School of Electrical Engineering Xi'an Jiaotong University Xi'an 710049 China
Abstract:In order to reduce the greenhouse effect of SF6 gas, it is necessary to investigate the environment-friendly gas insulated transmission line (EGIL) with free SF6 gas for environmental benefits of equipment. From three aspects, including the molecular design and synthesis of preparation for environment-friendly insulation gas, insulation performance and gas-solid material compatibility, 1 000kV EGIL prototype development and operational technology, the research status was summarized in this paper. The replacement optimal design and hybrid design method for new substitution environment-friendly gases has been established. The proposal of insulation design basis with C4F7N gas mixture was provided. The support insulators and pipeline prototype for 1 000kV EGIL has been manufactured, and the operation and maintenance system of EGIL was set up. Some main problems of EGIL to be resolved further has been put forward, including the synthesis and preparation technology for new environment-friendly gas, arc extinguishing and its recovery characteristics of C4F7N gas mixture, operation and maintenance strategy of EGIL et al. In order to master the key technology of C4F7N environment-friendly insulation gas and its application of equipment, all the achievements will provide the beneficial reference for the development and operation of environment-friendly electrical equipment.
高克利, 颜湘莲, 刘焱, 王宝山, 胡世卓, 李志闯. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1): 3-20.
Gao Keli, Yan Xianglian, Liu Yan, Wang Baoshan, Hu Shizhuo, Li Zhichuang. Progress of Technology for Environment-Friendly Gas Insulated Transmission Line. Transactions of China Electrotechnical Society, 2020, 35(1): 3-20.
[1] 齐波, 张贵新, 李成榕, 等. 气体绝缘金属封闭输电线路的研究现状及应用前景[J]. 高电压技术, 2015, 41(5): 1466-1473. Qi Bo, Zhang Guixin, Li Chengrong, et al.Research status and prospect of gas-insulated metal enclosed transmission line[J]. High Voltage Engineering, 2015, 41(5): 1466-1473. [2] 李鹏, 李志兵, 孙倩, 等. 特高压气体绝缘金属封闭输电线路绝缘设计[J]. 电网技术, 2015, 39(11): 3305-3312. Li Peng, Li Zhibing, Sun Qian, et al.Research on insulation design of UHV gas-insulated metal-enclosed transmission line[J]. Power System Technology, 2015, 39(11): 3305-3312. [3] 李鹏, 颜湘莲, 王浩, 等. 特高压交流GIL输电技术研究及应用[J]. 电网技术, 2017, 41(10): 3161-3167. Li peng, Yan Xianglian, Wang Hao, et al. Research and application of UHVAC gas-insulated transmission line[J]. Power System Technology, 2017, 41(10): 3161-3167. [4] 张晓星, 陈琪, 张季, 等. 高气压下环保型C4F7N/CO2混合气体工频击穿特性[J]. 电工技术学报, 2019, 34(13): 2839-2845. Zhang Xiaoxing, Chen Qi, Zhang Ji, et al.Power Frequency breakdown characteristics of environmental-friendly C4F7N/CO2 gas mixtures under high pressure conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2839-2845. [5] Kieffel Y, Irwin T, Ponchon P, et al.Green gas to replace SF6 in electrical grids[J]. IEEE Power & Energy Magazine, 2016, 14(2): 32-39. [6] 颜湘莲, 高克利, 郑宇, 等. SF6混合气体及替代气体研究进展[J]. 电网技术, 2018, 42(6): 1837-1844. Yan Xianglian, Gao Keli, Zheng Yu, et al.Progress of gas mixture and alternative gas of SF6[J]. Power System Technology, 2018, 42(6): 1837-1844. [7] 陈轩恕, 胡毅, 辛耀中, 等. 高压长距离压缩空气绝缘输电线路的发展前景[J]. 高电压技术, 2009, 35(12): 3137-3142. Chen Xuanshu, Hu Yi, Xin Yaozhong, et al.Prospect of high voltage long distance compressed-air insulated transmission lines[J]. High Voltage Engineering, 2009, 35(12): 3137-3142. [8] 肖登明, 阎究敦. 气体绝缘输电线路(GIL)的应用及发展[J]. 高电压技术, 2017, 43(3): 699-707. Xiao Dengming, Yan Jiudun.Application and development of gas insulated transmission line(GIL)[J]. High Voltage Engineering, 2017, 43(3): 699-707. [9] 高克利, 颜湘莲, 王浩, 等. 环保型气体绝缘输电线路(GIL)技术发展[J]. 高电压技术, 2018, 44(10): 3105-3113. Gao Keli, Yan Xianglian, Wang Hao, et al.Progress in environment-friendly gas-insulated transmission line (GIL)[J]. High Voltage Engineering, 2018, 44(10): 3105-3113. [10] Vijh A K.Electric strength and molecular properties of gaseous dielectrics[J]. IEEE Transactions on Electrical Insulation, 1977, 12(4): 313-315. [11] Vijh A K.On the relative electric strengths and the molecular weights of gases[J]. IEEE Transactions on Electrical Insulation, 1982, 17(1): 84-87. [12] Brand K P.Dielectric strength, boiling point and toxicity of gases-different aspects of the same basic molecular properties[J]. IEEE Transactions on Electrical Insulation, 1982, 17(5): 451-456. [13] Meurice N, Sandre E, Aslanides A, et al.Simple theoretical estimation of the dielectric strength of gases[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(6): 946-948. [14] Rabie M, Dahl D A, Donald S M A, et al. Predictors for gases of high electrical strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 856-863. [15] 侯华, 余小娟, 周文俊, 等. 绝缘气体介电强度的构效关系[J]. 高等学校化学学报, 2018, 39(11): 2477-2484. Hou Hua, Yu Xiaojuan, Zhou Wenjun, et al.Theoretical investigations on the structure-activity relationship to the dielectric strength of the insulation gases[J]. Chemical Journal of Chinese Universities, 2018, 39(11): 2477-2484. [16] Yu Xiaojuan, Hou Hua, Wang Baoshan.Prediction on dielectgric strength and boiling point of gaseous molecules for replacement of SF6[J]. Journal of Computational Chemistry, 2017, 38(10): 721-729. [17] Yu Xiaojuan, Hou Hua, Wang Baoshan.A priori theoretical model for discovery of environmentally sustainable perfluorinated compounds[J]. Journal of Physical Chemistry A, 2018, 122(13): 3462-3469. [18] Costello M G, Flynn R M, Bulinski M J. Fluorinated nitriles as dielectric gases: USA, 0083979[P].2015-3-26. [19] 罗运柏, 高占阳, 高克利, 等. 环保绝缘气体七氟异丁腈(C4F7N)的制备技术现状与发展[J]. 高电压技术, 2019, 45(4): 1009-1017. Luo Yunbai, Gao Zhanyang, Gao Keli, et al.Current status and development of preparation technology of environment friendly insulating gas heptafluoroisobutyronitrile(C4F7N)[J]. High Voltage Engineering, 2019, 45(4): 1009-1017. [20] OECD. Guidelines for testing of chemicals: acute oral toxicity[M]. Paris: OECD Publishing, 2009. [21] GBZ/T 240.4—2011化学品毒理学评价程序和试验方法第4部分: 急性吸入毒性试验[S]. 2011. [22] GB∕T 15670.6—2017农药登记毒理学试验方法第6部分: 急性吸入毒性试验B∕T 15670.6—2017农药登记毒理学试验方法第6部分: 急性吸入毒性试验[S]. 2017. [23] DL/T921—2005六氟化硫气体毒性生物试验法[S]. 2005. [24] Yu Xiaojuan, Hou Hua, Wang Baoshan.Mechanistic and kinetic investigations on the thermal unimolecular reaction of heptafluoroisobutyronitrile[J]. Journal of Physical Chemistry A, 2018, 122(38): 7704-7715. [25] 侯华, 颜湘莲, 余小娟, 等. 分子筛吸附C4F7N/ CO2混合绝缘气体及其分解产物的理论研究[J]. 高电压技术, 2019, 45(4): 1040-1047. Hou Hua, Yan Xianglian, Yu Xiaojuan, et al.Theoretical investigation on the adsorption of C4F7N/CO2 dielectric gas and decomposition products in zeolite[J]. High Voltage Engineering, 2019, 45(4): 1040-1047. [26] 孙继星, 戴琪, 边凯, 等. 自由导电微粒受迫运动过程与振动特性[J]. 电工技术学报, 2018, 33(22): 5224-5232. Sun Jixing, Dai Qi, Bian Kai, et al.Forced movement process and vibration characteristics of free conductive particle[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5224-5232. [27] Murphy A B, Arundelli C J.Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas[J]. Plasma Chemistry & Plasma Processing, 1994, 14(4): 451-490. [28] Yang Fei, Chen Zhexin, Wu Yi, et al.Two-temperature transport coefficients of SF6-N2 mixtures[J]. Journal of Applied Physics, 2015, 22(10): 665-666. [29] Gleizes A, Razafinimanana M, Vacquie S.Transport coefficients in arc plasma of SF6-N2 mixtures[J]. Journal of Applied Physics, 1983, 54(7): 3777-3787. [30] Cressault Y, Connord V, Hingana H, et al.Transport properties of CF3I thermal plasmas mixed with CO2, air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers[J]. Journal of Physics D: Applied Physics, 2011, 44(49): 1-9. [31] Li Xingwen, Guo Xiaoxue, Murphy A B, et al.Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas[J]. Journal of Applied Physics, 2017, 122(14): 143302. [32] Li Yi, Zhang Xiaoxing, Xiao Song, et al.Decomposition properties of C4F7N/N2 gas mixture: an environmentally friendly gas to replace SF6[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 5173-5182. [33] Nechml H E, Beroual A, Girodet A, et al.Effective ionization coefficients and limiting field strength of fluoronitriles-CO2 mixtures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 886-892. [34] Wu Yi, Wang Chunlin, Sun Hao, et al.Properties of C4F7N-CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients[J]. Journal of Physics D: Applied Physics, 2018, 51:155206. [35] 龙云翔, 郭立平, 沈震宇, 等. SF6替代气体C4F7N-N2电离特性的稳态汤逊法研究[J]. 高电压技术, 2019, 45(4): 1064-1070. Long Yunxiang, Guo Liping, Shen Zhenyu, et al.Investigation of ionization characteristics of C4F7N-N2 gas mixtures as alternative gas to SF6 by steady-state Townsend method[J]. High Voltage Engineering, 2019, 45(4): 1064-1070. [36] Long Yunxiang, Guo Liping, Shen Zhenyu, et al.Ionization and attachment coefficients in C4F7N/N2 gas mixtures for use as a replacement to SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(4): 1358-1362. [37] Nechmi H E, Beroual A, Girodet A, et al.Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 23(5): 2587-2593. [38] Li Yi, Zhang Xiaoxing, Zhang Ji, et al.Experimental study on the partial discharge and AC breakdown properties of C4F7N/CO2 mixture[J]. High Voltage, 2019, 4(1):12-17. [39] Zhang Xiaoxing, Chen Qi, Zhang Ji, et al.Experimental study on power frequency breakdown characteristics of C4F7N/CO2 gas mixture under quasi-homogeneous electric field[J]. IEEE Access, 2019 (7): 19100-19108. [40] Li Yi, Zhang Xiaoxing, Chen Qi, et al.Study on the dielectric properties of C4F7N/N2 mixture under highly non-uniform electric field[J]. IEEE Access, 2018 (8): 42868-42876. [41] 胡世卓, 周文俊, 郑宇, 等. 三种缓冲气体对C4F7N混合气体绝缘特性的影响[J].高电压技术, 2019, 45(4): 2040-2047. Hu Shizhuo, Zhou Wenjun, Zheng Yu, et al.Influence of three buffer gases on dielectric strength of C4F7N mixtures[J]. High Voltage Engineering, 2019, 45(4): 2040-2047 . [42] Hu Shizhuo, Zhou Wenjun, Yu Jianhui, et al.Synergistic effect of i-C3F7CN/CO2 and i-C3F7CN/N2 mixtures[J]. IEEE Access, 2019 (7): 50159-50167. [43] 张天然,周文俊,王凌志, 等. 工频电压下电场不均匀度对C4F7N/CO2混合气体绝缘性能的影响[J]. 高电压技术, 2019, DOI:10.13336/j.1003-6520.hve. 20190321008. Zhang Tianran, Zhou Wenjun, Wang Linzhi, et al.Influence of electric field non-uniformity on breakdown characteristics in C4F7N/CO2 gas mixtures under power frequency voltage[J]. High Voltage Engineering, 2019, DOI: 10.13336/j.1003-6520.hve. 20190321008. [44] Li Zhichuang, Ding Weidong, Liu Yishu.Surface flashover characteristics of the epoxy insulator in C4F7N/CO2 mixtures in the uniform field under AC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(4): 1065-1072. [45] 李志闯, 丁卫东, 高克利, 等. C4F7N/CO2混合气体中环氧绝缘子雷电冲击沿面绝缘特性[J]. 高电压技术, 2019, 45(4): 1071-1077. Li Zhichuang, Ding Weidong, Gao Keli, et al.Surface flashover characteristics of epoxy insulator in C4F7N/CO2 mixtures under lightening impulse voltage[J]. High Voltage Engineering, 2019, 45(4): 1071-1077. [46] Kieffel Y, Berteloot T, Souchal S, et al.Characteristics of g3-an alternative to SF6[C]//CIGRE, 2017 Colloquium Study Committees A3, B4 & D1, Winnipeg, Canada, 2017: D1-152. [47] Li Yi, Zhang Xiaoxing, Chen Qi, et al.Study on the thermal interaction mechanism between C4F7N-N2 and copper, aluminum[J]. Corrosion Science, 2019, 153: 32-46. [48] Li Yi, Zhang Xiaoxing, Zhang Ji, et al.Thermal compatibility between fluorinated nitrile-carbon dioxide gas mixture and copper, aluminum using in gas insulated switchgear[J]. IEEE Access, 2019, 7: 19792-19800. [49] Li Yi, Zhang Xiaoxing, Xiao Song, et al.Insight into the compatibility between C4F7N and silver: experiment and theory[J]. Journal of Physics and Chemistry of Solids, 2019, 126: 105-111. [50] 郑哲宇, 李涵, 周文俊, 等. 环保绝缘气体C3F7CN与密封材料三元乙丙橡胶的相容性研究[J]. 高电压技术, 2019, 45(4): 2071-2077. Zheng Zheyu, Li Han, Zhou Wenjun, et al.Compatibility of eco-friendly insulating medium C3F7CN and sealing material EPDM[J]. High Voltage Engineering, 2019, 45(4): 2071-2077. [51] 赵明月, 韩冬, 荣文奇, 等. 电晕放电下全氟异丁腈(C4F7N)与空气混合气体的分解产物规律及其形成原因分析[J]. 高电压技术, 2018, 44(10): 3174-3182. Zhao Mingyue, Han Dong, Rong Wenqi, et al.Analysis of decomposition by-products and its formation mechanism of C4F7N/air mixed gases under AC corona discharge[J]. High Voltage Engineering, 2018, 44(10): 3174-3182. [52] 罗逸, 唐炬, 潘成, 等. 直流GIS/GIL 盆式绝缘子表面电荷主导积聚方式的转变机理[J]. 电工技术学报, 2019, https://doi.org/10.19595/j.cnki.1000-6753. tces.181449. Luo Yi, Tang Ju, Pan Cheng, et al. The transition mechanism of surface charge accumulation dominating way in DC GIS/GIL[J]. Transactions of China Electrotechnical Society, 2019, https://doi. org/10.19595/j.cnki. 1000-6753.tces.181449. [53] 赵明月, 韩冬, 韩先才, 等. C6F12O/N2与C6F12O/空气混合气体的电晕放电分解产物分析[J]. 电工电能新技术, 2018, 37(11):1-8. Zhao Mingyue, Han Dong, Han Xiancai, et al.Decomposition by-products of C6F12O/N2 and C6F12O/ air mixed gases under AC 50Hz corona discharge[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(11):1-8. [54] 田汇冬, 李乃一, 吴泽华, 等. 直流GIL 柱式绝缘子表面电荷积聚特性[J]. 电工技术学报, 2018, 33(22): 5178-5188. Tian Huidong, Li Naiyi, Wu Zehua, et al.Accumulation characteristics of surface charge for post insulators of DC enclosed transmission line[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5178-5188. [55] 陈允, 崔博源, 王宁华, 等. 1 100kV 气体绝缘开关设备用盆式绝缘子中心嵌件结构设计[J]. 高电压技术, 2016, 42(2): 564-570. Chen Yun, Cui Boyuan, Wang Ninghua, et al.Structural design of central insert in basin-type insulator used for 1 100kV GIS[J]. High Voltage Engineering, 2016, 42(2): 564-570. [56] 高璐, 贾云飞, 汲胜昌, 等. 环保型1 100kV GIL用三支柱绝缘子多物理场耦合仿真及校核[J].高电压技术, 2019, 45(4): 2078-2082. Gao Lu, Jia Yunfei, Ji Shengchang, et al.Multi-physical field analysis and verification of tri-post insulator on environment-friendly 1 100kV GIL[J]. High Voltage Engineering, 2019, 45(4): 2078-2082. [57] 屠幼萍, 艾昕, 成毅, 等. C3F7CN/N2混合气体的直流击穿特性[J]. 电工技术学报, 2018, 33(22): 5189-5195. Tu Youping, Ai Xin, Cheng Yi, et al.DC breakdown characteristics of C3F7CN/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5189-5195. [58] Zhang Yue, Xu Yongpeng, Qian Yong, et al.A simulation study on optical signal propagation characteristics of partial discharge in single-core and three-cores GIL[C]//2018 IEEE 4th Information Technology and Mechatronics Engineering Conference, Chongqing, 2018: 688-691. [59] 王璁, 张颖, 艾昕, 等. 不均匀电场中C3F7CN/CO2混合气体直流局部放电特性[J]. 高电压技术, 2019, 45(5):1048-1055. Wang Cong, Zhang Ying, Ai Xin, et al.DC partial discharge characteristics of C3F7CN/CO2 gas mixtures under non-uniform electric field[J]. High Voltage Engineering, 2019, 45(4): 1048-1055. [60] 钱勇, 张悦, 刘伟, 等. T型GIS模型中局部放电光学信号传播特性仿真[J].高电压技术, 2019, 45(5): 1510-1517. Qian Yong, Zhang Yue, Liu Wei, et al.Simulation on the propagation of the optical signal of partial discharge in T-shaped GIS model[J]. High Voltage Engineering, 2019, 45(4): 1510-1517.