Review on the Developments of Structure-Activity Relationship and Molecular Design of the Replacement Dielectric Gases for SF6
Wang Baoshan1, Yu Xiaojuan1, Hou Hua1, Zhou Wenjun2, Luo Yunbai1
1. College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China; 2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China
Abstract:Since SF6 is the most potent greenhouse gas with the highest global warming potential, the search for a viable alternative is a world-widely hot topic with considerable challenges. Developments of structure-activity relationship and molecular design on the replacement dielectric gases for SF6 were reviewed to breakthrough the bottleneck of both experimental and theoretical studies. Various models to predict the dielectric strengths of arbitrary insulation gases were detailed in terms of idea, methodology, and limitations. New protocols for the molecular design of the novel alternative gases were presented on the basis of the a priori theoretical models and quantum chemical calculations. The present review sheds new lights on the rational molecular design of new chemistries and will inspire experimental synthesis and field tests on the environmentally sustainable dielectric gases.
王宝山, 余小娟, 侯华, 周文俊, 罗运柏. 六氟化硫绝缘替代气体的构效关系与分子设计技术现状及发展[J]. 电工技术学报, 2020, 35(1): 21-33.
Wang Baoshan, Yu Xiaojuan, Hou Hua, Zhou Wenjun, Luo Yunbai. Review on the Developments of Structure-Activity Relationship and Molecular Design of the Replacement Dielectric Gases for SF6. Transactions of China Electrotechnical Society, 2020, 35(1): 21-33.
[1] Fang Xuekun, Hu Xia, Greet J M, et al.Sulfur hexafluoride (SF6) emission estimates for China: an inventory for 1990-2010 and a projection to 2020[J]. Environmental Science & Technology, 2013, 47(6): 3848-3855. [2] Okubo H, Beroual A.Recent trend and future perspectives in electrical insulation techniques in relation to sulfur hexafluoride (SF6) substitutes for high voltage electric power equipment[J]. IEEE Electrical Insulation Magazine, 2011, 27(2): 34-42. [3] Franck C M, Dahl D A, Rabie M, et al.An efficient procedure to identify and quantify new molecules for insulating gas mixtures[J]. Contributions to Plasma Physics, 2014, 54(1): 3-13. [4] Kieffel Y, Irwin T, Ponchon P, et al.green gas to replace SF6 in electrical grids[J]. IEEE Power and Energy Magazine, 2016, 14(2): 32-39. [5] Beroual A, Haddad A. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications[J]. Energies, 2017, 10(8): 1216(1-20). [6] 周文俊, 郑宇, 杨帅, 等. 替代SF6的环保型绝缘气体研究进展与趋势[J]. 高压电器, 2016, 52(12): 8-14. Zhou Wenjun, Zheng Yu, Yang Shuai, et al.Research progress and trend of SF6 alternative with environment friendly insulation gas[J]. High Voltage Apparatus, 2016, 52(12): 8-14. [7] Stoller P C, Doiron C B, Tehlar D, et al.Mixtures of CO2 and C5F10O perfluoroketone for high voltage applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 2712-2721. [8] Mantilla J D, Gariboldi N, Grob S, et al.Investigation of the insulation performance of a new gas mixture with extremely low GWP[C]//IEEE Electrical Insulation Conference, Philadelphia, PA, USA, 2014: 469-473. [9] Nechmi H E, Beroual A, Girodet A, et al.Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2587-2593. [10] Yamamoto O, Takuma T, Hamada S, et al.Applying a gas mixture containing c-C4F8 as an insulation medium[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2001, 8(6): 1075-1081. [11] Katagiri H, Kasuya H, Mizoguchi H, et al.Investigation of the performance of CF3I gas as a possible substitute for SF6[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2008, 15(5): 1424-1429. [12] Osmokrovic P, Stojkanovic M, Stankovic K, et al.Synergistic effect of SF6 and N2 gas mixtures on the dynamics of electrical breakdown[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2): 677-688. [13] Wooton R E, Kegelman, M R.Gases superior to SF6 for insulation and interruption[R]. Electric Power Research Institute (EPRI) EL-2620, Final Report, 1982: 1-200. [14] Boggs S A.Sulphur hexafluoride: introduction to the material and dielectric[J]. IEEE Electrical Insulation Magazine, 1989, 5(5): 18-21. [15] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733. [16] Hodnebrog O, Etminan M, Fuglestvedt J S, et al.Global warming potentials and radiative efficiencies of halocarbons and related compounds: a comprehensive review[J]. Reviews of Geophysics, 2013, 51(2): 300-378. [17] Hochberg B M, Sandberg E Y.Investigation of the disruptive strength of gases[J]. Journal of Technology Physics (USSR), 1942, 12(2-3): 65-75. [18] Wilson W A, Simons J H, Brice T J.The dielectric strength of gaseous fluorocarbons[J]. Journal of Applied Physics, 1950, 21: 203-205. [19] Heylen A E D, Lewis T J. The electrical strength of hydrocarbon gases[J]. British Journal of Applied Physics, 1956, 7: 411-415. [20] Narbut P, Berg D, Works C N, et al.Factors controlling electric strength of gaseous insulation[J]. Transactions of the American Institute of Electrical Engineers Part III: Power Apparatus & Systems, 1959, 78(3): 545-550. [21] Mason J H. Disharges[J]. IEEE Transactions on Electrical Insulation, 1978, EI-13(4): 211-238. [22] Cooke C M, Cookson A H. The nature and practice of gases as electrical insulators[J]. IEEE Transactions on Electrical Insulation, 1978, EI-13(4): 239-248. [23] Vijh A K.Correlation between electric strengths and heats of atomization of gaseous dielectrics[J]. Journal of Materials Science, 1976, 11(4): 784-785. [24] Vijh A K.Intermolecular bonding and the electric strengths of dielectric gases[J]. Journal of Materials Science, 1976, 11(7): 1374-1375. [25] Vijh A K. Communication on the relative electric strengths and the molecular weights of gases[J]. IEEE Transactions on Electrical Insulation, 1982, EI-17(1): 84-87. [26] Paul J C, Saha T N, Chakravarty B.On the gaseous breakdown[J]. Indian Journal of Physics, 1974, 48(2): 138-142. [27] Brand K P, Kopainsky J.Breakdown field strength of unitary attaching gases and gas mixtures[J]. Applied Physics, 1979, 18(4): 321-333. [28] Brand K P. Dielectric strength, boiling point and toxicity of gases-different aspects of the same basic molecular properties[J]. IEEE Transactions on Electrical Insulation, 1982, EI-17(5): 451-456. [29] Meurice N. Sandre E, Aslanides A, et al.Simple theoretical estimation of the dielectric strength of gases[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2004, 11(6): 946-948. [30] Olivet A, Duque D, Vega L F.Analysis of electron interactions in dielectric gases[J]. Journal of Applied Physics, 2007, 101(1): 15-34. [31] Rabie M, Dahl D A, Donald S M A, et al. Predictors for gases of high electrical strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 856-863. [32] Zhang Chaohai, Shi Huixuan, Cheng Lin, et al.First principles based computational scheme for designing new SF6 replacements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2572-2578. [33] Yu Xiaojuan, Hou Hua, Wang Baoshan.Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6[J]. Journal of Computational Chemistry, 2017, 38(10): 721-729. [34] Politzer P, Murray J S.Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials[J]. Fluid Phase Equilibria, 2001, 185(1): 129-137. [35] Rienstra-Kiracofe J C, Tschumper G S, Schaefer H F, et al. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations[J]. Chemical Reviews, 2002, 102(1): 231-282. [36] Anderson L N, Oviedo M Belén, Wong B M.Accurate electron affinities and orbital energies of anions from a nonempirically tuned range-separated density functional theory approach[J]. Journal of Chemical Theory and Computation, 2017, 13(4): 1656-1666. [37] Bozkaya U, Unal A.State-of-the-art computations of vertical ionization potentials with the extended koopmans' theorem integrated with the CCSD(T) method[J]. Journal of Physical Chemistry A, 2018, 122(17): 4375-4380. [38] Soyda E, Bozkaya U.Assessment of orbital-optimized MP2.5 for thermochemistry and kinetics: dramatic failures of standard perturbation theory approaches for aromatic bond dissociation energies and barrier heights of radical reactions[J]. Journal of Chemical Theory and Computation, 2015, 11(4): 1564-1573. [39] Eisfeld W. Highly accurate determination of the electron affinity of SF6 and analysis of structure and photodetachment spectrum of SF6[J]. Journal of Chemical Physics, 2011, 134(5): 054303(1-13). [40] Troe J, Miller T M, Viggiano A A. Communication: Revised electron affinity of SF6 from kinetic data[J]. Journal of Chemical Physics, 2012, 136(12): 244305 (1-3). [41] Menk S, Das S, Blaum K, et al. Vibrational autodetachment of sulfur hexafluoride anions at its long-lifetime limit[J]. Physical Review A, 2014, 89(2): 022502/1-5. [42] Olivet A, Duque D, Vega L F. Analysis of electron interactions in dielectric gases[J]. Journal of Applied Physics, 2007, 101(2): 023308(1-7). [43] 侯华, 余小娟, 周文俊, 等. 绝缘气体介电强度的构效关系[J]. 高等学校化学学报, 2018, 39(11): 2477-2484. Hou Hua, Yu Xiaojuan, Zhou Wenjun, et al.Theoretical investigations on the structure-activity relationship to the dielectric strength of the insulation gases[J]. Chemical Journal of Chinese Universities, 2018, 39(11): 2477-2484. [44] Yu Xiaojuan, Hou Hua, Wang Baoshan.A priori theoretical model for discovery of environmentally sustainable perfluorinated compounds[J]. Journal of Physical Chemistry A, 2018, 122(13): 3462-3469. [45] 李冰, 肖登明, 赵谡, 等. 第二代气体绝缘输电线路的温升数值计算[J]. 电工技术学报, 2017, 32(13): 271-276. Li Bing, Xiao Dengming, Zhao Su, et al.Temperature rise numerical calculation of the second generation gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 271-276. [46] 林林, 陈庆国, 程嵩, 等. 基于密度泛函理论的SF6潜在可替代性气体介电性能分析[J]. 电工技术学报, 2018, 33(18): 4382-4388. Lin Lin, Chen Qingguo, Cheng Song, et al.The analysis of SF6 potential alternative gas dielectric strength based on density functional theory[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4382-4388. [47] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. [48] 邓云坤, 马仪, 赵谡, 等. 基于电子输运参数的CF3I及CF3I-N2混合气体绝缘性能分析[J]. 电工技术学报, 2018, 33(7): 1641-1651. Deng Yunkun, Ma Yi, Zhao Su, et al.Analysis of the insulation properties of CF3I and CF3I-N2 gas mixtures from electron transport parameters[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1641-1651. [49] 李康, 郭润睿, 张国强. 一种SF6替代气体—氟碳气体的故障分解气体产生规律及基于分解物气体的故障判据研究[J]. 电工技术学报, 2019, 34(12): 2649-2656. Li Kang, Guo Runrui, Zhang Guoqiang.Study on fault decomposition properties and fault diagnostic criterion of fluorocarbon gas-a substitute gas for SF6[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2649-2656. [50] 彭敏, 王宝山, 于萍, 等. 六氟化硫替代气体三氟化硫氮的制备及表征[J]. 应用化工, 2018, 47(11): 2301-2303. Peng Min, Wang Baoshan, Yu Ping, et al.Preparation and characterization of NSF3 for the alternative gas of SF6[J]. Applied Chemical Industry, 2018, 47(11): 2301-2303. [51] 王易, 高克利, 王宝山, 等. 一种由三氟甲基磺酰氯制备三氟甲基磺酰氟的方法: 中国, 109824551A[P].2019-05-31.