Simulation Study on Streamer of Tip Defects in C4F7N/CO2 Mixed Gas
Zang Yiming1, Qian Yong1, Liu Wei2, Song Hui1, Jiang Xiuchen1
1. Department of Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China; 2. Key Laboratory for Sulfur Hexafluoride Gas Analysis and Purification of SGCC State Grid Anhui Electric Power Research Institute Hefei 230022 China
Abstract:In order to explore the generation mechanism and development process of streamer in new environment-friendly gas, and provide theoretical basis for optical detection and reliable diagnosis of partial discharge. This paper simulates a single flow injection of tip model in C4F7N/CO2 mixed gas under DC voltage by COMSOL. The discharge process of the streamer expresses the generation and motion of electrons and ions through the continuity equation, and obtains the variation law of the electric field and the density distribution of the luminous flux during the development of the streamer. The simulation results show that when the streamer head is close to the cathode, the luminous flux will increase exponentially. Then the space charge will be redistributed quickly, the electrons at the cathode will enter the anode through the streamer channel, the plasma sheath of one stream will be destroyed, and the electric field inside the stream will rise. As the conductivity of the channel decreases, the charge redistribution ends and the secondary streamer begins to develop toward the cathode. Compared with the primary streamer, the electric field distribution and the luminous flux distribution in the streamer are more uniform and the propagation speed is relatively slow.
臧奕茗, 钱勇, 刘伟, 宋辉, 江秀臣. C4F7N/CO2混合气体中尖端缺陷的流注放电仿真研究[J]. 电工技术学报, 2020, 35(1): 34-42.
Zang Yiming, Qian Yong, Liu Wei, Song Hui, Jiang Xiuchen. Simulation Study on Streamer of Tip Defects in C4F7N/CO2 Mixed Gas. Transactions of China Electrotechnical Society, 2020, 35(1): 34-42.
[1] 王健, 李伯涛, 李庆民, 等. 直流GIL 中线形金属微粒对柱式绝缘子表面电荷积聚的影响[J]. 电工技术学报, 2016, 31(15): 213-222. Wang Jian, Li Botao, Li Qingmin, et al.Impact of linear metal particle on surface charge accumulation of post insulator within DC GIL[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 213-222. [2] 屠幼萍, 艾昕, 成毅, 等. C3F7CN/N2混合气体的直流击穿特性[J]. 电工技术学报, 2018, 33(22): 5189-5195. Tu Youping, Ai Xin, Cheng Yi, et al.DC breakdown characteristics of C3F7CN/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2008, 33(22): 5189-5195. [3] 张晓星, 田双双, 肖淞, 等. SF6 替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. [4] 李鑫涛, 林莘, 徐建源, 等. SF6/N2混合气体电击穿特性仿真及实验[J]. 电工技术学报, 2017, 32(20): 42-52. Li Xintao, Lin Xin, Xu Jianyuan, et al.Simulations and experiments of dielectric breakdown characteristics in SF6/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 42-52. [5] 邓云坤, 马仪, 赵谡, 等. 基于电子输运参数的CF3I 及CF3I-N2 混合气体绝缘性能分析[J]. 电工技术学报, 2018, 33(7): 1641-1651. Deng Yunkun, Ma Yi, Zhao Su, et al.Analysis of the insulation properties of CF3I and CF3I-N2 gas mixtures from electron transport parameters[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1641-1651. [6] Hyrenbach M, Zache S.Alternative insulation gas for medium-voltage switchgear[C]//Petroleum and Chemical Industry Conference Europe, Berlin, Germany, 2016: 1-9. [7] Owens J G.Greenhouse gas emission reductions through use of a sustainable alternative to SF6[C]//IEEE Electrical Insulation Conference(EIC), Montreal, Canada, 2016: 535-538. [8] Kieffel Y, Biquez F.SF6 alternative development for high voltage switchgears[C]//IEEE Electrical Insulation Conference(EIC), Seattle, America, 2015: 379-383. [9] 李兴文, 邓云坤, 姜旭, 等. 环保气体C4F7N 和C5F10O 与CO2混合气体的绝缘性能及其应用[J]. 高电压技术, 2017, 43(3): 708-714. Li Xingwen, Deng Yunkun, Jiang Xu, et al.Insulation performance and application of enviroment-friendly gases mixtures of C4F7N and C5F10O with CO2[J]. High Voltage Engineering, 2017, 43(3): 708-714. [10] Nechmi H E, Beroual A, Girodet A, et al.Effective ionization coefficients and limiting field strength of fluoronitriles-CO2 mixtures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 886-892. [11] Kieffel Y, Irwin T, Ponchon P, et al.Green gas to replace SF6 in electrical grids[J]. IEEE Power and Energy Magazine, 2016, 14(2): 32-39. [12] Xu Yongpeng, Qian Yong, Sheng Gehao, et al.Simulation analysis on the propagation of the optical partial discharge signal in I-shaped and L-shaped GILs[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1421-1428. [13] 钱勇, 张悦, 刘伟, 等. T型GIS模型中局部放电光学信号传播特性仿真[J]. 高电压技术, 2019, 45(5): 1510-1517. Qian Yong, Zhang Yue, Liu Wei, et al.Simulation of optical signal propagation characteristics of pd in model T GIS[J]. High Voltage Engineering, 2019, 45(5): 1510-1517. [14] Raether H.Die entwicklung der elektronenlawine in den funkenkanal[J]. Zeitschrift für Physik, 1939, 112(7-8): 464-489. [15] Hudson G G, Loeb L B.Streamer mechanism and main stroke in the filamentary spark breakdown in air as revealed by photomultipliers and fast oscilloscopic techniques[J]. Physical Review, 1961, 123(1): 29. [16] Loeb, Leonard Benedict.Electrical coronas, their basic physical mechanisms[M]. California: University of California Press, 1965. [17] Sigmond R S.The residual streamer channel: Return strokes and secondary streamers[J]. Journal of Applied Physics 1986, 56(5): 1355-1370. [18] Babaeva N Y, Naidis G V.Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air[J]. Journal of Physics D: Applied Physics, 1996, 29(9): 2423. [19] Rauf S, Kushner M J.Dynamics of a coplanar-electrode plasma display panel cell. I. Basic operation[J]. Journal of Applied Physics, 1999, 85(7): 3460-3469. [20] Georghiou G E, Morrow R, Metaxas A C.The effect of photoemission on the streamer development and propagation in short uniform gaps[J]. Journal of Physics D: Applied Physics, 2001, 34(2): 200. [21] Ségur P, Bourdon A, Marode E, et al.The use of an improved Eddington approximation to facilitate the calculation of photoionization in streamer discharges[J]. Plasma Sources Science and Technology, 2006, 15(4): 648. [22] 蔡新景, 王新新, 邹晓兵, 等. 大气压下不同气体的流注放电特性[J]. 高电压技术, 2015, 41(6): 2047-2053. Cai Xinjing, Wang Xinxin, Zou Xiaobing, et al.Stream-discharge characteristics of different gases at atmospheric pressure[J]. High Voltage Engineering, 2015, 41(6): 2047-2053. [23] 汪沨, 李敏, 李锰, 等. 基于ETG-通量校正传输法的短间隙SF6/N2混合气体流注放电数值仿真[J]. 电工技术学报, 2016, 31(6): 234-241. Wang Feng, Li Min, Li Meng, et al.Numerical simulation of short gap streamer discharge in SF6/N2 gas mixtures based on Euler-Taylor-Galerkin-flux corrected transport method[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 234-241. [24] Naidis G V.Positive and negative streamers in air: velocity-diameter relation[J]. Physical Review E, 2009, 79(5): 057401. [25] Hauke G, Hughes T J R. A comparative study of different sets of variables for solving compressible and incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 153(1-2): 1-44. [26] do Carmo E G D, Alvarez G B. A new upwind function in stabilized finite element formulations, using linear and quadratic elements for scalar convection-diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(23-26): 2383-2402. [27] Wang Chunlin, Wu Yi, Sun Hao, et al.Thermophysical properties calculation of C4F7N/CO2 mixture based on computational chemistry-a theoretical study of SF6 alternative[C]//2017 IEEE 4th International Conference on Electric Power Equipment-Switching Technology, Xi′an, 2017: 255-258. [28] Liu Ningyu, Pasko V P.Effects of photoionization on propagation and branching of positive and negative streamers in sprites[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A4): A04301. [29] Morrow R, Lowke J J.Streamer propagation in air[J]. Journal of Physics D: Applied Physics, 1997, 30(4): 614. [30] Dordizadeh P, Adamiak K, Castle G S P. Numerical investigation of the formation of Trichel pulses in a needle-plane geometry[J]. Journal of Physics D: Applied Physics, 2015, 48(41): 415203. [31] Dordizadeh P, Adamiak K, Castle G S P. Study of the impact of photoionization on negative and positive needle-plane corona discharge in atmospheric air[J]. Plasma Sources Science and Technology, 2016, 25(6): 065009. [32] Liu Yining, Rehman F, Zimmerman W B.Reaction engineering of carbon monoxide generation by treatment with atmospheric pressure, low power CO2 DBD plasma[J]. Fuel, 2017, 209: 117-126.