Compatibility and Interaction Mechanism between C4F7N/CO2/O2 and EPDM
Wu Peng1, Ye Fanchao1, Li Yi1, Tang Ju1, Xiao Song1, Zhang Xiaoxing1,2
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 2. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System Hubei University of Technology Wuhan 430068 China
Abstract:C4F7N mixed gases have attracted much attention in recent years due to their excellent electrical properties and low global warming potential value. However, the compatibility of C4F7N and its gas mixture with the internal sealing materials of gas insulated equipment still needs to be tested before it is put into field application. At present, there have been some studies on the compatibility of C4F7N with EPDM, but few of them focus on the compatibility comparison between C4F7N gas mixtures and EPDM with different third monomers and the mechanism of gas-solid interaction. In this paper, ENB-EPDM and DCPD-EPDM were selected and the compatibility experiment was carried out with C4F7N/CO2/O2 mixed gases. The results reveal that some active structures in EPDM reacted with the CN group of C4F7N. The contact between gas and rubber surface could be effectively blocked by coating silicone grease, and the decomposition of C4F7N was reduced. In addition, after comparing the experimental results of the two kinds of rubber, it is found that ENB-EPDM is more suitable for sealing C4F7N gas mixture than DCPD-EPDM, the difference is due to the different crosslinking efficiency provided by the two third monomers.
[1] 李兴文, 赵虎. SF6替代气体的研究进展综述[J]. 高电压技术, 2016, 42(6): 1695-1701. Li Xingwen, Zhao Hu.Review of research progress in SF6 substitute gases[J]. High Voltage Engineering, 2016, 42(6): 1695-1701. [2] 郑忠波, 陈楠, 李志闯, 等. 操作冲击电压下C4F7N/CO2混合气体252kV GIL间隙及沿面放电特性[J]. 电工技术学报, 2021, 36(14): 3055-3062. Zheng Zhongbo, Chen Nan, Li Zhichuang, et al.Discharge characteristics of 252kV gas insulated transmission line under switching impulse voltage in C4F7N/CO2 mixtures[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3055-3062. [3] Rabie M, Franck C M.Assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6[J]. Environmental Science & Technology, 2018, 52(2): 369-380. [4] 李志闯, 郑忠波, 刘一树, 等. C4F7N/CO2混合气体中252kV盆式绝缘子工频沿面闪络特性研究[J]. 电工技术学报, 2020, 35(1): 62-69. Li Zhichuang, Zheng Zhongbo, Liu Yishu, et al.Surface flashover characteristics of the 252kV conical insulator in C4F7N/CO2 gas mixtures under AC voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 62-69. [5] Owens J G.Greenhouse gas emission reductions through use of a sustainable alternative to SF6[C]//2016 IEEE Electrical Insulation Conference, Montreal, QC, Canada, IEEE, 2016: 535-538. [6] 郑宇, 周文俊, 喻剑辉, 等. 温度对C4F7N/CO2混合气体工频放电场强的影响规律[J]. 电工技术学报, 2020, 35(1): 52-61. Zheng Yu, Zhou Wenjun, Yu Jianhui, et al.Influence of temperature on power frequency discharge field intensity of C4F7N/CO2 mixed gas[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 52-61. [7] 陈琪, 张晓星, 李祎, 等. O2对C4F7N-N2-O2混合气体绝缘和放电分解特性的影响[J]. 高电压技术, 2020, 46(3): 1028-1036. Chen Qi, Zhang Xiaoxing, Li Yi, et al.Effects of O2 on the insulation and discharge decomposition characteristics of C4F7N-N2-O2 gas mixture[J]. High Voltage Engineering, 2020, 46(3): 1028-1036. [8] 陈琪, 张晓星, 李祎, 等. 环保绝缘介质C4F7N/CO2/O2混合气体的放电分解特性[J]. 电工技术学报, 2020, 35(1): 80-87. Chen Qi, Zhang Xiaoxing, Li Yi, et al.The discharge decomposition characteristics of environmental friendly insulating medium C4F7N/CO2/O2 gas mixture[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 80-87. [9] 赵耀洪, 钱艺华, 陈天生, 等. SF6气密封橡胶材料气体渗透特性研究[J]. 高压电器, 2019, 55(10): 116-120, 127. Zhao Yaohong, Qian Yihua, Chen Tiansheng, et al.Experimental study on SF6 gas permeation characteristics of rubber sealing materials[J]. High Voltage Apparatus, 2019, 55(10): 116-120, 127. [10] Camilli G, Gordon G S, Plump R E.Gaseous insulation for high-voltage transformers[includes discussion[J]. Transactions of the American Institute of Electrical Engineers Part III: Power Apparatus and Systems, 1952, 71(1): 348-357. [11] Kieffel Y, Biquez F, Vigouroux D, et al.Characteristics of a fluoronitrile/CO2 mixture - an alternative to SF6[C]//Session Papers & Proceedings, Paris, 2016. [12] Kessler F, Sarfert-Gast W, Ise M, et al.Interaction of low global warming potential gaseous dielectrics with materials of gas-insulated systems[C]//The 20th International Symposium on High Voltage Engineering, Buenos Aires, Argentina, 2017. [13] 郑哲宇, 李涵, 周文俊, 等. 环保绝缘气体C3F7CN与密封材料三元乙丙橡胶的相容性研究[J]. 高电压技术, 2020, 46(1): 335-341. Zheng Zheyu, Li Han, Zhou Wenjun, et al.Compatibility of eco-friendly insulating medium C3F7CN and sealing material EPDM[J]. High Voltage Engineering, 2020, 46(1): 335-341. [14] 张亚茹, 刘静, 黄青丹, 等. 绝缘环保气体全氟异丁腈和二氧化碳对三元乙丙橡胶和丁腈橡胶耐老化性能的影响[J]. 橡胶工业, 2020, 67(3): 177-180. Zhang Yaru, Liu Jing, Huang Qingdan, et al.Effect of insulating and enviromental gas C4F7N and CO2 on aging resistance of EPDM and NBR[J]. China Rubber Industry, 2020, 67(3): 177-180. [15] 南方. GIS设备外壳法兰密封与通流能力研究[J]. 高压电器, 2015, 51(2): 112-115. Nan Fang.Research on GIS equipment shell flange and the flow through the sealing ability[J]. High Voltage Apparatus, 2015, 51(2): 112-115. [16] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压缩永久变形的测定第1部分:在常温及高温条件下: GB/T 7759.1—2015[S]. 北京: 中国标准出版社, 2015. [17] Zhang Xiaoxing, Chen Qi, Zhang Ji, et al.Experimental study on power frequency breakdown characteristics of C4F7N/CO2 gas mixture under quasi-homogeneous electric field[J]. IEEE Access, 2019, 7: 19100-19108. [18] 李旭东, 周伟, 屠幼萍, 等. 0.1~0.25MPa气压下二元混合气体SF6-N2和SF6-CO2的击穿特性[J]. 电网技术, 2012, 36(4): 260-264. Li Xudong, Zhou Wei, Tu Youping, et al.Breakdown characteristics of binary gas mixtures SF6-N2 and SF6-CO2 under 0.1-0.25 MPa atmosphere pressures[J]. Power System Technology, 2012, 36(4): 260-264. [19] 傅政. 橡胶材料及工艺学[M]. 北京: 化学工业出版社, 2013. [20] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 橡胶物理试验方法试样制备和调节通用程序: GB/T2941—2006[S]. 北京: 中国标准出版社, 2007. [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验: GB/T 3512—2014[S]. 北京: 中国标准出版社, 2015. [22] 刘欣, 谈金祝, 张武建, 等. 螺杆泵定子氢化丁腈橡胶材料的制备与压缩力学性能[J]. 南京工业大学学报(自然科学版), 2020, 42(5): 580-585. Liu Xin, Tan Jinzhu, Zhang Wujian, et al.Fabrication and compressive mechanical properties of hydrogenated nitrile rubber for screw pump stator[J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(5): 580-585. [23] 符寿康, 陶平, 康鑫, 等. 高低温循环作用下三元乙丙橡胶胶料的压缩永久变形及回弹值研究[J]. 橡胶科技, 2020, 18(3): 138-141. Fu Shoukang, Tao Ping, Kang Xin, et al.Compression set and resilience of EPDM under cyclic high and low temperature aging[J]. Rubber Science and Technology, 2020, 18(3): 138-141. [24] Radosavljević J, Nikolić L, Nikolić M, et al.Effect of ZnO on mechanical and electrical properties of peroxide cured EPDM[J]. International Polymer Processing, 2018, 33(5): 695-705. [25] da Maia J V, Pereira F P, Dutra J C N, et al. Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas[J]. Applied Surface Science, 2013, 285: 918-926. [26] Yang Li, Ravdel B, Lucht B L.Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2010, 13(8): A95. [27] Nansé G, Papirer E, Fioux P, et al.Fluorination of carbon blacks. An X-ray photoelectron spectroscopy study. Part II. XPS study of a furnace carbon black treated with gaseous fluorine at temperatures below 100 ℃. Influence of the reaction parameters and of the activation of the carbon black on the fluorine fixation[J]. Carbon, 1997, 35(3): 371-388. [28] Wang Zhengzhou, Zhou Shun, Hu Yuan.Intumescent flame retardation and silane crosslinking of PP/EPDM elastomer[J]. Polymers for Advanced Technologies, 2009, 20(4): 393-403. [29] 刘东, 杜爱华. 第三单体含量和种类对三元乙丙橡胶性能的影响[J]. 橡胶工业, 2017, 64(11): 670-673. Liu Dong, Du Aihua.Effects of third monomer content and type on properties of EPDM[J]. China Rubber Industry, 2017, 64(11): 670-673. [30] Zhu Jing, Zhao Xiuying, Liu Li, et al.Thermodynamic analyses of the hydrogen bond dissociation reaction and their effects on damping and compatibility capacities of polar small molecule/nitrile-butadiene rubber systems: molecular simulation and experimental study[J]. Polymer, 2018, 155: 152-167. [31] Xiong Jiayu, Zhang Boya, Zhang Ziyue, et al.The adsorption properties of environmentally friendly insulation gas C4F7N on Zn (0 0 0 1) and ZnO (1 0 1 0) surfaces: a first-principles study[J]. Applied Surface Science, 2020, 509: 144854.