Analysis of Relaxation Process of Insulating Oil Based on Dielectric Response in Time and Frequency Domain
Xu Qingchuan, Wang Shengkang, Lin Fuchang, Li Hua
State Key Laboratory of Advanced Electromagnetic Engineering and Technology Key Laboratory of Pulsed Power Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract:The dielectric response in time and frequency domain of insulation oil with different water content and aging status is measured and analyzed in this paper. Analyze the relaxation process of insulating oil with shorter relaxation time based on the frequency domain dielectric spectroscopy. Analyze the relaxation process of insulating oil with longer relaxation time and DC conductance process based on the polarization current. And analyze the influence on relaxation process parameters by different water moisture and aging status. As the research shows, there are three characteristic frequency band of insulating oil: DC conductance band, relaxation polarization band and high frequency polarization band. The real part of frequency spectrum at DC conductance band and high frequency polarization band is constant, and the imaginary part is inversely proportional to the frequency, which shows the resistance characteristic. However, the insulation loss of DC conductance band is dominated by conductance loss, and is decided by DC conductivity. The insulation loss of high frequency polarization band is dominated by polarization loss, and is decided by high frequency conductivity. Moisture content has greater impact on DC conductivity of insulating oil. Aging status has greater impact on high frequency conductivity of insulating oil. The real and the gradient of imaginary part of relaxation polarization band change with frequency, which shows the typical relaxation characteristics. Moisture content reduces the relaxation time and shifts the relaxation polarization band to higher frequency. Aging status has less impact on the relaxation time of insulating oil.
徐晴川, 王圣康, 林福昌, 李化. 基于时频域介电响应的绝缘油弛豫过程分析[J]. 电工技术学报, 2022, 37(9): 2355-2365.
Xu Qingchuan, Wang Shengkang, Lin Fuchang, Li Hua. Analysis of Relaxation Process of Insulating Oil Based on Dielectric Response in Time and Frequency Domain. Transactions of China Electrotechnical Society, 2022, 37(9): 2355-2365.
[1] 林朝明, 叶荣. 油浸式变压器绝缘诊断方法的研究进展[J]. 电气技术, 2019, 20(12): 1-6, 22. Lin Chaoming, Ye Rong.Research progress of insulation diagnosis method for oil-immersed transformer[J]. Electrical Engineering, 2019, 20(12): 1-6, 22. [2] 王松林. 变压器绝缘老化诊断技术[J]. 电气技术, 2011, 12(8): 82-85. Wang Songlin.Transformer insulation aging diagnosis technology[J]. Electrical Engineering, 2011, 12(8): 82-85. [3] Ekanayake C, Gubanski S M, Graczkowski A, et al.Frequency response of oil impregnated pressboard and paper samples for estimating moisture in transformer insulation[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1309-1317. [4] Singha S, Asano R, Frimpong G, et al.Comparative aging characteristics between a high oleic natural ester dielectric liquid and mineral oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(1): 149-158. [5] Wang Dongyang, Zhou Lijun, Wang Lujia, et al.Frequency domain dielectric response of oil gap in time-varying temperature conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 964-973. [6] Bandara K, Ekanayake C, Saha T K.Modelling the dielectric response measurements of transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 1283-1291. [7] Muhamad N A, Phung B T, Blackburn T R, et al.Polarization and depolarization current (PDC) tests on biodegradable and mineral transformer oils at different moisture levels[C]//2009 Australasian Universities Power Engineering Conference, Adelaide, SA, Australia, 2009: 1-6. [8] 廖瑞金, 马志钦, 郝建, 等. 水分对变压器油和绝缘纸频域介电谱特性的影响[J]. 高电压技术, 2010, 36(12): 2869-2875. Liao Ruijin, Ma Zhiqin, Hao Jian, et al.Influence of water content on frequency domain spectroscopy characteristics of transformer oil and insulation paper[J]. High Voltage Engineering, 2010, 36(12): 2869-2875. [9] 周远翔, 沙彦超, 陈维江, 等. 变压器油与绝缘纸板电导特性研究[J]. 电网技术, 2013, 37(9): 2527-2533. Zhou Yuanxiang, Sha Yanchao, Chen Weijiang, et al.Conduction characteristics in transformer oil and electrical insulation paper[J]. Power System Technology, 2013, 37(9): 2527-2533. [10] 刘兰荣, 孙建涛, 马斌, 等. 温度和微水对变压器油及油纸绝缘介电性能的影响[J]. 电气应用, 2021, 40(3): 8-13. Liu Lanrong, Sun Jiantao, Ma Bin, et al.Influence of temperature and micro water on dielectric properties of oil and oil-paper insulation of transformer[J]. Electrotechnical Application, 2021, 40(3): 8-13. [11] 黄国泰, 郭弟弟. 应用初始斜率特征量评估变压器中绝缘油微水含量状况[J]. 电气技术, 2016, 17(10): 53-58. Huang Guotai, Guo Didi.Apply initial slope feature amount for evaluating the micro-water content of transformer insulation oil[J]. Electrical Engineering, 2016, 17(10): 53-58. [12] 赵勇进, 刘丽岚, 张良县. 含水量对变压器油介电性能影响的研究[J]. 高压电器, 2017, 53(11): 159-163, 169. Zhao Yongjin, Liu Lilan, Zhang Liangxian.Effects of moisture content on dielectric properties of transformer oil[J]. High Voltage Apparatus, 2017, 53(11): 159-163, 169. [13] 刘丽岚, 彭宗仁, 王柱, 等. 含水量和温度对变压器油介电性能的影响[J]. 电工电气, 2018(3): 29-32. Liu Lilan, Peng Zongren, Wang Zhu, et al.Effects of moisture and temperature on dielectric properties of transformer oil[J]. Electrotechnics Electric, 2018(3): 29-32. [14] 温福新, 董明, 任明, 等. 基于修正的Havriliak-Negami模型的SiO2纳米改性变压器油宽频介电弛豫特性[J]. 电工技术学报, 2016, 31(7): 166-172. Wen Fuxin, Dong Ming, Ren Ming, et al.The broadband dielectric relaxation properties of the transformer oil based on SiO2 nanoparticles using modified Havriliak-Negami model[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 166-172. [15] 温福新, 董明, 任明, 等. 温度对纳米改性变压器油宽频介电谱特性的影响[J].中国电机工程学报, 2016, 36(8): 2289-2295. Wen Fuxin, Dong Ming, Ren Ming, et al.Temperature influence on the frequency domain spectroscopy properties of transformer oil based on nanoparticles[J]. Proceedings of the CSEE, 2016, 36(8): 2289-2295. [16] 贾海峰, 刘骥, 张明泽, 等. 微水含量对老化后变压器油介电性能影响分析[J]. 哈尔滨理工大学学报, 2020, 25(6): 70-76. Jia Haifeng, Liu Ji, Zhang Mingze, et al.Analysis of influence of moisture content on dielectric properties of transformer oil after aging[J]. Journal of Harbin University of Science and Technology, 2020, 25(6): 70-76. [17] 杨丽君, 高思航, 高竣, 等. 油纸绝缘频域介电谱的修正Cole-Cole模型特征参量提取及水分含量评估方法[J]. 电工技术学报, 2016, 31(10): 26-33. Yang Lijun, Gao Sihang, Gao Jun, et al.Characteristic parameters extracted from modified Cole-Cole Model and moisture content assessment methods study on frequency-domain dielectric spectroscopy of oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 26-33. [18] 刘媛, 董明, 任明, 等. 油纸绝缘频域介电谱仿真模拟中XY模型与有限元模型对比研究[J]. 高电压技术, 2014, 40(11): 3483-3490. Liu Yuan, Dong Ming, Ren Ming, et al.Comparison and research of XY model and finite element model in the simulation of frequency domain spectroscopy of oil-paper insulation[J]. High Voltage Engineering, 2014, 40(11): 3483-3490. [19] 赵双孔. 介电谱方法及应用[M]. 北京: 化学工业出版社, 2008. [20] 董明, 刘媛, 任明, 等. 油纸绝缘频域介电谱解释方法研究[J]. 中国电机工程学报, 2015, 35(4): 1002-1008. Dong Ming, Liu Yuan, Ren Ming, et al.Explanation Study of frequency-domain dielectric spectroscopy for oil-paper insulation system[J]. Proceedings of the CSEE, 2015, 35(4): 1002-1008. [21] 邓映鑫, 杨丽君, 燕飞东, 等. 受潮油纸绝缘的非线性介电响应特性及H-W模型在时-频转换中的应用[J]. 电工技术学报, 2020, 35(21): 4609-4619. Deng Yingxin, Yang Lijun, Yan Feidong, et al.Nonlinear dielectric response characteristics of damp oil-impregnated pressboard insulation and application of H-W model in time-frequency conversion[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4609-4619. [22] 张大宁, 刘孝为, 詹江杨, 等. 变压器油纸绝缘频域介电谱的虚部分析[J]. 电工技术学报, 2019, 34(4): 847-854. Zhang Daning, Liu Xiaowei, Zhan Jiangyang, et al.Analysis of imaginary part of frequency domain spectroscopy for oil-paper insulation transformer[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 847-854. [23] 刘骥, 张明泽, 赵春明, 等. 基于频域介电响应分频段优化计算的变压器油纸绝缘老化参数定量计算方法[J]. 电工技术学报, 2020, 35(9): 2020-2031. Liu Ji, Zhang Mingze, Zhao Chunming, et al.Quantitative calculation method of transformer oil-paper insulation aging parameters based on frequency dielectric spectrum frequency range optimized calculation[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2020-2031. [24] 杨峰, 唐超, 周渠, 等. 基于等效电路的油纸绝缘系统受潮状态分析[J]. 电工技术学报, 2020, 35(21): 4586-4596. Yang Feng, Tang Chao, Zhou Qu, et al.Analyzing the moisture state of oil-paper insulation system using an equivalent circuital model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4586-4596. [25] 郑君亮, 江修波, 蔡金锭, 等. 去极化电流解谱分析油纸绝缘等效电路参数研究[J]. 电力系统保护与控制, 2014, 42(21): 54-58. Zheng Junliang, Jiang Xiubo, Cai Jinding, et al.Research on spectrum analysis of the depolarization current to identify the parameter of oil/paper insulation equivalent circuit[J]. Power System Protection and Control, 2014, 42(21): 54-58. [26] Weerasundara R, Raju G G.An efficient algorithm for numerical computation of the complex dielectric permittivity using Hilbert transform and FFT techniques through Kramers Kronig relation[C]//IEEE International Conference on Solid Dielectrics, Toulouse, France, 2004: 558-561. [27] Itahashi S, Mitsui H, Sato T, et al.State of water in hydrocarbon liquids and its effect on conductivity[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(6): 1117-1122. [28] 林燕桢, 蔡金锭. 回复电压极化谱特征量与油纸绝缘变压器微水含量关系分析[J]. 电力系统保护与控制, 2014, 42(5): 148-153. Lin Yanzhen, Cai Jinding.Analysis of the relationship between the characteristics of the return voltage polarization spectrum and micro water content of oil-paper insulation transformer[J]. Power System Protection and Control, 2014, 42(5): 148-153. [29] 王伟, 董文妍, 李芳义, 等. 升温过程中水在矿物油和纤维素界面扩散和聚集行为的分子模拟[J]. 电工技术学报, 2019, 34(17): 3696-3704. Wang Wei, Dong Wenyan, Li Fangyi, et al.Molecular simulation of the diffusion and aggregation of water at the interface between mineral oil and cellulose during temperature rising[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3696-3704.