Influence of GPO-3 Barrier on AC Breakdown Voltage of Rod-Plane Gaps and Surface Residual Charge Characteristics
Zan Haibin1, Li Guochang2,3, Wang Jingbing1, Wei Yanhui2
1. CRRC Qingdao SiFang Rolling Stock Research Institute Co. Ltd Qingdao 266031 China; 2. Institute of Advanced Electrical Materials Qingdao University of Science and Technology Qingdao 266042 China; 3. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China;
Abstract:The insulation performance of the whole system can be greatly improved by introducing the insulation barrier. The effects of size, position and thickness of insulation barrier on ac breakdown voltage were studied. Furthermore, the surface residual charge properties on the barrier after discharge were measured by non-contact surface potentiometer. The experimental results indicate that the breakdown voltage of the system increases up to 1.91 times. When the thickness exceeds about 6mm, the increase of breakdown voltage is not obvious. Obvious residual charges can be observed on the barrier after breakdown, while the surface potential of GPO-3 reaches 3 856V after breakdown and reduces to 239V after 1h. The peak density of surface charges on GPO-3 are 1.59×1019/m3 and 8.87×1018/m3 respectively, and the trap level is about 1.0eV. This paper can provide a reference for the design of the insulation barrier.
昝海斌, 李国倡, 王景兵, 魏艳慧. GPO-3隔板对棒-板间隙工频击穿电压的影响及表面残余电荷特性[J]. 电工技术学报, 2020, 35(8): 1799-1806.
Zan Haibin, Li Guochang, Wang Jingbing, Wei Yanhui. Influence of GPO-3 Barrier on AC Breakdown Voltage of Rod-Plane Gaps and Surface Residual Charge Characteristics. Transactions of China Electrotechnical Society, 2020, 35(8): 1799-1806.
[1] 张国芹. 车顶高压箱安装结构: 中国, CN 104882805 A[P].2015-09-02. [2] Bian Xingming, Wang Liming, Macalpine J M K, et al. Positive corona inception voltages and corona currents for air at various pressures and humilities[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1): 63-70. [3] 付洋洋, 罗海云, 邹晓兵, 等. 棒-板电极下缩比气隙辉光放电相似性的仿真研究[J]. 物理学报, 2014, 63(9): 288-295. Fu Yangyang, Luo Haiyun, Zou Xiaobing, et al.Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configu- ration[J]. Chinese Journal of Physics, 2014, 63(9): 288-295. [4] 舒胜文, 刘畅, 阮江军. 棒-板电极正直流电晕起始判据对比[J]. 武汉大学学报, 2015, 48(6): 836-841, 847. Shu Shengwen, Liu Chang, Ruan Jiangjun.Com- parative of positive DC corona inception criteriafor a road-plane electrode[J]. Engineering Journal of Wuhan University, 2015, 48(6): 836-841, 847. [5] 廖瑞金, 伍飞飞, 刘康淋, 等. 棒-板电极直流负电晕放电脉冲过程中的电子特性研究[J]. 电工技术学报, 2015, 30(10): 319-329. Liao Ruijin, Wu Feifei, Liu Kanglin, et al.Simulation of characteristics of electrons during a pulse cycle in bar-plate DC negative corona discharge[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(10): 319-329. [6] 文韬, 张乔根, 郭璨, 等. 冲击电压下SF6棒-板间隙放电极性效应的反转现象[J]. 高电压技术, 2015, 41(1): 275-281. Wen Tao, Zhang Qiaogen, Guo Can, et al.Reversal phenomenon of discharge polarity effect in SF6 rod-plate gap under impulse voltages[J]. High Voltage Engineering, 2015, 41(1): 275-281. [7] 杨亚奇, 李卫国. 低气压直流电压下流注放电特性与极性效应的反转[J]. 电工技术学报, 2018, 33(13): 3083-3088. Yang Yaqi, Li Weiguo.DC streamer discharge characteristics and the reversion of polarity effect under low pressure condition[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3083-3088. [8] 周远翔, 周仲柳, 郭绍伟, 等. 基于脉冲电流法的低频与工频电压下油中电晕放电特性对比研究[J]. 电工技术学报, 2019, 34(1): 160-169. Zhou Yuanxiang, Zhou Zhongliu, Guo Shaowei, et al.Comparison of the characteristics of corona discharge in the oil under low and power frequency voltage by impulse-current method[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 160-169. [9] 胡琴, 何高辉, 彭华东, 等, 高湿条件下基于凝露分布模型的导线电晕起始电压预测[J]. 电工技术学报, 2018, 33(7): 1634-1640. Hu Qin, He Gaohui, Peng Huadong, et al.Prediction of conductor corona onset voltage based on condensation-distribution model under high humidity conditions[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1634-1640. [10] Kang H, Na J B, Chung Y D, et al.Experimental study on the barrier effects in gaseous Helium for the insulation design of a high voltage SFCL[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1328-1331. [11] Kara A, Onal E, Kalenderli O, et al.The effect of insulating barriers on AC breakdown voltage in inhomogeneous field[C]//IEEE Mediterranean Elec- trotechnical Conference (MELECON), Benalmádena, Spain, 2006: 1206-1208. [12] Sebo S A, Kahler J, Hutchins S.et al.The effect of insulating sheets in various gaps-the study of AC breakdown voltages and barrier factors[C]//11th International Symposium on High Voltage Engin- eering, London, UK, 1999: 144-147. [13] 郑跃胜, 陈雍, 钟小燕, 等. 隔板尺寸对棒-板空气绝缘间隙工频耐压特性的影响[J]. 高电压技术, 2018, 44(1): 195-200. Zheng Yuesheng, Chen Yong, Zhong Xiaoyan, et al.Effects of barrier dimensions on AC withstand characteristics of air insulated rod-plane gaps[J]. High Voltage Engineering, 2018, 44(1): 195-200. [14] Kara A, Kalenderli O, Mardikyan K.DC breakdown voltage characteristics of small air gaps with insulating barriers in non-uniform field[C]//Inter- national Conference on High Voltage Engineering and Application, New Orleans, Louisiana, 2010: 425-428. [15] Rezinkina M, Rezinkin O, D'Alessandro F, et al. Experimental and modelling study of the dependence of corona discharge on electrode geometry and ambient electric field[J]. Journal of Electrostatics, 2017, 87: 79-85. [16] Wilkins R, Lang M, Allison M.Effect of insulating barriers in arc flash testing[J]. IEEE Transactions on Industry Applications, 2008, 44(5): 1354-1359. [17] 施围, 邱毓昌, 张乔根. 高电压工程基础[M]. 北京: 机械工业出版社, 2006. [18] Li Guochang, Li Shengtao, Pan Shaoming, et al.Dynamic charge transport characteristics in polyimide surface and surface layer under low-energy electron radiation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2393-2403. [19] Shen Wenwei, Mu Haibao, Zhang Guanjun, et al.Identification of electron and hole trap based on isothermal surface potential decay model[J]. Journal of Applied Physics, 2013, 113(8): 083706. [20] Meunier M, Quirke N.Molecular modeling of electron trapping in polymer insulators[J]. The Journal of Chemical Physics, 2000, 113: 369-376. [21] Meunier M, Quirke N, Aslanides A.Molecular modeling of electron traps in polymer insulators: chemical defects and impurities[J]. The Journal of Chemical Physics, 2001, 115: 2876-2881. [22] Simmons J G, Tam M C.Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators con- taining arbitrary trap distributions[J]. Physical Review B, 1973, 7(8): 3706-3713. [23] 杨百屯, 屠德民, 刘耀南. 等温电荷理论及其检测固体介质中的陷阱分布[J]. 应用科学学报, 1992(3): 233-240. Yang Baitun, Tu Demin, Liu Yaonan.Theory of isothermal charge and direct determination of trap distributions in solid dielectrics[J]. Journal of Applied Sciences, 1992(3): 233-240.