Plasma Fluorinated Epoxy Resin and Its Insulation Properties in C4F7N/CO2 Mixed Gas
Zhan Zhenyu1,2, Ruan Haoou1, Lü Fangcheng1,2, Liu Wei3, Li Zhibing4, Xie Qing1,2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China; 3. State Grid Anhui Electric Power Research Institute Hefei 230022 China; 4. China Electric Science Research Institute Co. Ltd Beijing 100192 China
Abstract:In the long-term operation of gas insulated switchgear (GIS)/gas insulated transmission line (GIL), the charge on the surface of the spacer seriously threatens the stable operation of the equipment. Improving the chemical and physical properties of the spacer surface can effectively improve its insulation performance. In this paper, the epoxy resin insulation samples were fluorinated by low temperature plasma technique. The microscopic physical and chemical compositions of the modified insulation samples were analyzed by AFM, SEM, EDS and XPS. Plasma fluorination can introduce the fluorine element on the surface of the epoxy resin efficiently and controllable. The surface roughness of the sample increases first and then decreases with the modification time. The hole energy level is slightly deeper, and the trap energy level becomes shallower first and then deeper. The AC and DC creeping flashover in the C4F7N/CO2 mixed gas reached the maximum value in the modified 10min sample. The experimental results show that the appropriate fluorination causes an increase in roughness, which leads to an increase in creepage distance, also cause a slower dissipation of positive charge and a faster dissipation of negative charge, finally increase in the flashover voltage of the sample. Excessive fluorination causes damage to the structure of the sample, and the fluorine element is peeled off, resulting in a decrease in dielectric strength.
[1] 高克利, 颜湘莲, 刘焱, 等. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1): 33-50. Gao Keli, Yan Xianglian, Liu Yan, et al.Progress of technology for environment-friendly gas-insulated transmission line[J]. Transactions of China Electro- technical Society, 2020, 35(1): 33-50. [2] 李鹏, 颜湘莲, 王浩, 等. 特高压交流GIL输电技术研究及应用[J]. 电网技术, 2017, 41(10): 3161-3167. Li Peng, Yan Xianglian, Wang Hao, et al.Research and application of UHVAC gas-insulated trans- mission line[J]. Power System Technology, 2017, 41(10): 3161-3167. [3] 穆海宝, 张冠军, 铃木祥太, 等. 交流电压下聚合物材料表面的电荷分布特性[J]. 中国电机工程学报, 2010, 30(31): 130-136. Mu Haibao, Zhang Guanjun, Suzuki Shota, et al.Surface charge distribution of polymeric insulating materials under HVAC[J]. Proceedings of the CSEE, 2010, 30(31): 130-136. [4] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅱ: 电荷调控及抑制策略[J]. 电工技术学报, 2018, 33(22): 5145-5158. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, Part Ⅱ: charge control and suppression strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5145-5158. [5] Hideo Fujinami, Tadasu Takuma, Masafumi Yashima, et al.Mechanism and effect of DC charge accumu- lation on SF6 gas insulated spacers[J]. IEEE Power Engineering Review, 1989, 9(7): 1765-1772. [6] Zhou Hongyang, Ma Guoming, Li Chengrong, et al.Impact of temperature on surface charges accumu- lation on insulators in SF6-filled DC-GIL[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 601-610. [7] 罗毅, 唐炬, 潘成, 等. 直流GIS/GIL盆式绝缘子表面电荷主导积聚方式的转变机理[J]. 电工技术学报, 2019, 34(23): 5039-5048. Luo Yi, Tang Ju, Pan Cheng, et al.The transition mechanism of surface charge accumulation dominating way in DC GIS/GIL[J]. Transactions of China Elec- trotechnical Society, 2019, 34(23): 5039-5048. [8] 田浩, 李继承, 郝留成, 等. 直流电压下环氧绝缘材料电气性能对电荷积聚的影响[J]. 电网技术, 2015, 39(5): 1463-1468. Tian Hao, Li Jicheng, Hao Liucheng, et al.Influence of electrical properties of epoxy insulating materials on surface charge accumulation under DC voltage[J]. Power System Technology, 2015, 39(5): 1463-1468. [9] 艾昕, 周福文, 金花, 等. 微/纳米复合涂层对环氧树脂直流电场下闪络电压的影响[J]. 高压电器, 2018, 54(5): 33-37. Ai Xin, Zhou Fuwen, Jin Hua, et al.Influence of micro/nano composite coating on flashover characteri- stics of epoxy resin[J]. High Voltage Apparatus, 2018, 54(5): 33-37. [10] 律方成, 阴凯, 付可欣, 等. 氟化剥离填料对氮化硼/环氧复合材料沿面闪络电压的影响[J]. 高电压技术, 2017, 43(9): 2800-2807. Lü Fangcheng, Yin Kai, Fu Kexin, et al.Effect of fluorination and exfoliation filler on the surface flashover voltage of boron nitride/epoxy resin composites[J]. High Voltage Engineering, 2017, 43(9): 2800-2807. [11] Du B X, Li Z L, Li Jin.Effects of direct fluorination on space charge accumulation in HTV silicone rubber[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2353-2360. [12] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [13] Wang Ruixue, Zhang Cheng, Liu Xiong, et al.Microsecond pulse driven Ar/CF4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure[J]. Applied Surface Science, 2015, 328: 509-515. [14] Shinya Ishikawa, Ken Yukimura, Koichi Matsunaga, et al.The surface modification of poly (tetrafluo- roethylene) film using dielectric barrier discharge of intermittent pulse voltage[J]. Surface and Coatings Technology, 2000, 130(1): 52-56. [15] Seeböck R, Esrom H, Charbonnier M, et al.Modification of polyimide in barrier discharge air-plasmas: chemical and morphological effects[J] Plasmas and Polymers, 2000, 5(2): 103-118. [16] 马云飞, 章程, 李传扬, 等. 重频脉冲放电等离子体处理聚合物材料加快表面电荷消散的实验研究[J]. 中国电机工程学报, 2016, 36(6): 1731-1738. Ma Yunfei, Zhang Cheng, Li Chuanyang, et al.Experimental study of accelerating surface charge dissipation on polymer treated by repetitively pulsed discharge plasmas[J]. Proceedings of the CSEE, 2016, 36(6): 1731-1738. [17] Shao Tao, Yang Wenjin, Zhang Cheng, et al.Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier dis- charge[J]. Applied Physics Letters, 2014, 105(7): 071607. [18] 马翊洋, 章程, 孔飞, 等. 等离子体射流阵列辅助薄膜沉积对环氧树脂表面电气特性的影响[J]. 高电压技术, 2018, 44(9): 3089-3096. Ma Yiyang, Zhang Cheng, Kong Fei, et al.Effect of plasma jet array assisted film deposition on epoxy resin surface electrical characteristics[J]. High Voltage Engineering, 2018, 44(9): 3089-3096. [19] 王珏, 徐蓉, 严萍. 环氧复合绝缘材料表面处理方法对高气压下闪络特性的影响[J]. 电工技术学报, 2018, 33(20): 4704-4711. Wang Jue, Xu Rong, Yan Ping.Effect of surface treatment methods of epoxy composite insulation on flashover characteristics under high pressure[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4704-4711. [20] 方志, 吴伟杰, 钱晨. 水蒸气含量对Ar气中介质阻挡放电特性的影响[J]. 高电压技术, 2015, 41(9): 2895-2902. Fang Zhi, Wu Weijie, Qian Chen.Influences of water vapor volume fraction on discharge characteristics of dielectric barrier discharge in Ar[J]. High Voltage Engineering, 2015, 41(9): 2895-2902. [21] 章程, 方志, 赵龙章, 等. 介质阻挡放电在绝缘材料表面改性中的应用[J]. 绝缘材料, 2006, 39(6): 42-50. Zhang Cheng, Fang Zhi, Zhao Longzhang, et al.Application of dielectric barrier discharge in surface modification of insulating material[J]. Insulating Materials, 2006, 39(6): 42-50. [22] 万方超, 许飞凡, 魏伟, 等. 交联聚苯乙烯表面CF4等离子体改性及其真空沿面闪络性能[J]. 高电压技术, 2018, 44(12): 3857-3864. Wan Fangchao, Xu Feifan, Wei Wei, et al.Surface modification of cross-linked polystyrene by CF4 plasma and its vacuum surface flashover perfor- mance[J]. High Voltage Engineering, 2018, 44(12): 3857-3864. [23] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmo- spheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [24] 曾幸荣. 高分子近代测试分析技术[M]. 广州: 华南理工大学出版社, 2009. [25] 张亮, 樊孝平, 王建祺. 碳氟等离子体改性PET表面的反应机制的研究[J]. 高等学校化学学报, 1998, 19(11): 1853-1856. Zhang Liang, Fan Xiaoping, Wang Jianqi.Study on the reaction mechanism of carbon fluoride plasma modified PET surface[J]. Chemical Journal of Chinese University, 1998, 19(11): 1853-1856. [26] Pilar Herrera-Fierro, Masabumi Masuko, William R, et al.XPS analysis of 440C steel surfaces lubricated with perfluoropolyethers under sliding conditions in high vacuum[R]. NASA Technical Memorandum 1994: 1-20. [27] Feng Shijun, Huang Yanggen, Wang Qiang, et al.Synthesis and antibiofouling properties of novel crosslinkable terpolymers containing semifluoroalkyl substituted aromatic side chains[J]. Polymer Engineering and Science, 2010, 50(5): 944-951. [28] Adeel Afzal, Humaira Masood Siddiqi, Shaukat Saeed, et al.Exploring resin viscosity effects in solventless processing of nano-SiO2/epoxy polymer hybrids[J]. RSC Advances, 2013, 3(12): 3885-3892. [29] Ramos R, Cunge G, Pelissier B, et al.Cleaning aluminum fluoride coatings from plasma reactor walls in SiCl4/Cl2 plasmas[J]. Plasma Sources Science and Technology, 2007, 16(4): 711-715. [30] Riello D, Zetterström C, Parr C, et al.AlF3 reaction mechanism and its influence on α-Al2O3 minerali- zation[J]. Ceramics International, 2016, 42(8): 9804-9814. [31] 冉昭玉, 杜伯学, 李进, 等. 输电管道中环氧树脂绝缘子氟化改性研究现状[J]. 广东电力, 2018, 31(8): 18-26. Ran Zhaoyu, Du Boxue, Li Jin, et al.Research status of fluorination modification of epoxy resin insulators in transmission pipelines[J]. Guangdong Electric Power, 2018, 31(8): 18-26. [32] Wang Cong, Cheng Yi, Tu Youping, et al.Characteristics of C3F7CN/CO2 as an alternative to SF6 in HVDC-GIL systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1351-1356. [33] Feuerstein R J, Senitzky B.Surface breakdown of silicon[J]. Journal of Applied Physics, 1991, 70(1): 288-298. [34] 蒙志成, 孙永卫, 原青云, 等. 不同温度下聚酰亚胺陷阱分布规律研究[J]. 量子电子学报, 2018, 35(2): 230-235. Meng Zhicheng, Sun Yongwei, Yuan Qingyun, et al.Trap distribution of polyimide at different tem- peratures[J]. Chinese Journal of Quantum Electronics, 2018, 35(2): 230-235. [35] Simmons J G, Tam M C.Theory of Isothermal currents and the direct determination of trap parameters in semiconductors and insulators con- taining arbitrary trap distributions[J]. Physical Review B, 1973, 7(8): 3706-3713. [36] 廖瑞金, 周天春, George Chen, 等. 聚合物材料空间电荷陷阱模型及参数[J]. 物理学报, 2012, 61(1): 017201. Liao Ruijin, Zhou Tianchun, George Chen, et al.A space charge trapping model and its parameters in polymeric materials[J]. Acta Physica Sinica, 2012, 61(1): 017201. [37] 林浩凡, 王瑞雪, 谢庆, 等. 等离子体射流快速改性促进表面电荷衰减[J]. 电工技术学报, 2017, 32(16): 256-264. Lin Haofan, Wang Ruixue, Xie Qing, et al.Rapid surface modification by plasma jet to promote surface charge decaying[J]. Transactions of China Electro- technical Society, 2017, 32(16): 256-264. [38] 周力任, 吴广宁, 高波, 等. 聚酰亚胺薄膜中电荷输运机理和空间电荷特性[J]. 电工技术学报, 2009, 24(12): 6-11. Zhou Liren, Wu Guangning, Gao Bo, et al.Charge Transport mechanism and space charge characteristic in polyimide film[J]. Transactions of China Electro- technical Society, 2009, 24(12): 6-11. [39] 胡多, 任成燕, 孔飞, 等. 表面粗糙度对聚合物材料真空沿面闪络特性的影响[J]. 电工技术学报, 2019, 34(16): 3512-3521. Hu Duo, Ren Chengyan, Kong Fei, et al.Influence of the roughness on surface flashover of polymer materials in vacuum[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3512-3521.