1. School of Electrical Engineering Zhengzhou University Zhengzhou 450001 China;
2. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China;
3. Key Laboratory of Power Electronics and Electric Drive Chinese Academy of SciencesBeijing 100190 China
Metal particles pollution in gas insulation transmission line (GIL) and gas insulated switchgear (GIS) is one of the main factors affecting the insulation performance of the equipment. The electrode surface coating can improve the lifting voltage of metal particles under DC stress to a certain extent. The SiO2-TiO2 composite film was deposited on the surface of Cu by AC powered atmospheric pressure plasma jet. A compact composite film consisting of TiO2 film with a thickness of about 2μm and SiO2 film of 3.5μm was obtained. At 1kHz, the dielectric constant of TiO2 and SiO2 films is about 24 and 4, respectively. In addition, an experimental platform for metal particles motion test was established to compare the influence of the deposition of film on the initiation of metal particles. Besides, the electric field distortion between the high-voltage electrode and the metal particles before and after deposition were simulated. The result shows that the lifting voltage of metal particles can be improved about 20% by depositing thin films on the electrode surface. The initial lifting time of metal particles is delayed. The maximum field strength between metal particles and electrode decreases from 1.98×108V/m to 1.82×108V/m after deposition of composite thin film. Therefore, the deposition of thin films on the electrode surface by plasma enhanced chemical vapor deposition can improve the initiation voltage and reduce the activity of metal particles. This worked provides a new solution for engineering application.
程显, 徐晖, 王瑞雪, 高远, 章程, 邵涛. 等离子体复合薄膜沉积抑制金属微粒启举[J]. 电工技术学报, 2018, 33(20): 4672-4681.
Cheng Xian, Xu Hui, Wang Ruixue, Gao Yuan, Zhang Cheng, Shao Tao. Composite Thin Film Deposited by Plasma to Inhibit the Lifting of Metal Particles. Transactions of China Electrotechnical Society, 2018, 33(20): 4672-4681.
[1] 李庆民, 王健, 李伯涛, 等. GIS/GIL中金属微粒污染问题研究进展[J]. 高电压技术, 2016, 42(3): 849- 860.Li Qingmin, Wang Jian, Li Botao, et al. Review on metal particle contamination in GIS/GIL[J]. High Voltage Engineering, 2016, 42(3): 849-860.
[2] 季洪鑫, 李成榕, 庞志开, 等. GIS中线形颗粒起举电压的影响因素[J]. 中国电机工程学报, 2017, 37(1): 301-312.Ji Hongxin, Li Chengrong, Pang Zhikai, et al. Influence factors of the lifting voltage of linear particle in GIS[J]. Proceedings of the CSEE, 2017, 37(1): 301-312.
[3] 孙继星, 陈维江, 李志兵, 等. 直流电场下运动金属微粒的带电估算与碰撞分析[J]. 高电压技术, 2018, 44(3): 779-786.Sun Jixing, Chen Weijiang, Li Zhibing, et al. Charge estimation and impact analysis of moving metal particle under DC electric field[J]. High Voltage Engineering, 2018, 44(3): 779-786.
[4] Yang Dong, Tang Ju, Zeng Fuping, et al.Correlation characteristics between SF6 decomposition process and partial discharge quantity under negative DC condition initiated by free metal particle defect[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(2): 574-582.
[5] 由志勋, 刘静. 直流GIL中线形金属微粒运动与放电特性研究综述[J]. 高压电器, 2017(10): 36-43.You Zhixun, Liu Jing. Review of motion and discharge characteristics of wire metallic particle in DC GIL[J]. High Voltage Apparatus, 2017(10): 36-43.
[6] 王程嘉, 唐力, 李歆蔚, 等. 金属微粒对交流滤波器断路器灭弧室电场的影响[J]. 高压电器, 2017(6): 105-112.Wang Chengjia, Tang Li, Li Tianwei, et al. Effect of metallic particles on electric field of AC filter circuit breaker arc-extinguishing chamber[J]. High Voltage Apparatus, 2017(6): 105-112.
[7] 张乔根, 游浩洋, 马径坦, 等. 直流电压下SF6中自由线形导电微粒运动特性[J]. 高电压技术, 2018, 44(3): 696-703.Zhang Qiaogen, You Haoyang, Ma Jingtan, et al. Motion behavior of free conducting wire-type particles in SF6 gas under DC voltage[J]. High Voltage Engineering, 2018, 44(3): 696-703.
[8] Sun Jixing, Chen Weijiang, Li Zhibing, et al.Research on experiment and simulation of charged spherical metal particle collision characteristic under DC electric field[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2016, 23(5): 3117-3125.
[9] Zou Zhilong, Li Dayong, Xu Jiayu, et al.Impact of fine particles on the direct current electric field of the conductor due to corona discharge[J]. Journal of Electrostatics, 2017, 88: 106-110.
[10] 王健, 李庆民, 李伯涛, 等. 直流应力下电极表面覆膜对金属微粒启举的影响机理研究[J]. 电工技术学报, 2015, 30(5): 119-127.Wang Jian, Li Qingmin, Li Botao, et al. Mechanism analysis of the electrode-coating’s impact on the particle-lifting under DC voltage[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 119-127.
[11] 律方成, 董蒙, 颜湘莲, 等. GIL中电极覆膜对金属微粒表面电场及受力的影响[J]. 南方电网技术, 2017, 11(8): 55-60.Lü Fangcheng, Dong Meng, Yan Xianglian, et al. Effect of dielectrically coated electrode on surface electric field and force of metal particles in GIL[J]. Southern Power System Technology, 2017, 11(8): 55-60.
[12] 刘赵淼, 金艳梅, 刘华敏. 薄膜涂覆过程中缺陷的形成及其防治措施的研究进展[J]. 安全与环境学报, 2008, 8(3): 135-139.
[13] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685- 705.Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmo- spheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705.
[14] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-8.Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-8.
[15] 王昕珏, 张波, 朱颖, 等. 含憎水性成分的二维射流阵列放电特性及表面改性研究[J]. 中国电机工程学报, 2017, 37(10): 2824-2831.Wang Xinjue, Zhang Bo, Zhu Ying, et al. Study on discharge characteristics and surface modification of hydrophobic atmospheric pressure plasma two- dimensional jet array[J]. Proceedings of the CSEE, 2017, 37(10): 2824-2831.
[16] 李文耀, 王瑞雪, 章程, 等. 大气压弥散放电辅助Cu表面类SiO2薄膜沉积[J]. 中国电机工程学报, 2016, 36(24): 6736-6742.Li Wenyao, Wang Ruixue, Zhang Cheng, et al. SiO2-like film deposition on Cu surface assisted by atmospheric pressure diffuse discharge[J]. Pro- ceedings of the CSEE, 2016, 36(24): 6736-6742.
[17] 桑利军, 王敏, 陈强, 等. 聚乙烯薄膜表面沉积纳米SiOx涂层的阻隔性能[J]. 中国表面工程, 2015, 28(3): 36-41.Sang Lijun, Wang Min, Chen Qiang, et al. Barrier properties of SiOx coatings desposited on polyelene films[J]. China Surface Engineering, 2015, 28(3): 36-41.
[18] 王健. 直流GIL金属微粒的荷电运动机制与治理方法研究[D]. 北京: 华北电力大学, 2017.
[19] 崔超超, 章程, 任成燕, 等. 大气压等离子体射流Cu表面改性抑制微放电[J]. 中国电机工程学报, 2018, 38(5): 1553-1561.Cui Chaochao, Zhang Cheng, Ren Chengyan, et al. Surface modification of Cu by atmospheric pressure plasma jet for micro discharge inhibition[J]. Pro- ceedings of the CSEE, 2018, 38(5): 1553-1561.
[20] Wang Ruixue, Li Wenyao, Zhang Cheng, et al.Thin insulating film deposition on copper by atmospheric- pressure plasmas[J]. Plasma Processes & Polymers, 2017, 14(7): e1600248.
[21] Gazal Y, Dublanche-Tixier C, Chazelas C, et al.Multi-structural TiO2 film synthesised by an atmospheric pressure plasma-enhanced chemical vapour deposition microwave torch[J]. Thin Solid Films, 2016, 600: 43-52.
[22] 张鸿飞, 汪良主, 张立德, 等. 金红石相纳米块材TiO2的介电特性[J]. 物理学报, 1996, 45(6): 1046- 1050.Zhang Hongfei, Wang Liangzhu, Zhang Lide, et al. The dielectric behavior in nano-structured materials TiO2 (Rutile)[J]. Acta Physica Sinica, 1996, 45(6): 1046-1050.
[23] 阮圣平, 董玮, 吴凤清, 等. 高介电常数TiO2纳米晶的表面态研究[J]. 高等学校化学学报, 2004, 25(3): 484-487.Ruan Shengping, Dong Wei, Wu Fengqing, et al. Surface state studies of nano-crystalline TiO2 With high dielectric constant[J]. Chemical Journal of Chinese Universities, 2004, 25(3): 484-487.
[24] 律方成, 刘宏宇, 阴凯, 等. 直流GIL不均匀场中金属微粒运动的数值模拟及放电特性分析[J]. 中国电机工程学报, 2017, 37(10): 2798-2806.Lü Fangcheng, Liu Hongyu, Yin Kai, et al. Numerical simulation and discharge characteristic analysis of metallic particle motion in non-uniform electric field of DC GIL[J]. Proceedings of the CSEE, 2017, 37(10): 2798-2806.