Laser Induced Fluorescence Diagnostics of the Temporal and Spatial Distribution of OH Radicals and O Atom in a Low Temperature Plasma Jet at Atmospheric Pressure
1. College of Automation Engineering Nanjing University of Aeronautics and AstronauticsNanjing 210016 China; 2. State Key Laboratory of Advanced Electromagentic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China
Abstract:The method of traditional optical emission spectroscopy is not suitable for the quantitative measurements of the density of OH radical and O atom in low temperature plasma jets at atmospheric pressure. Thus, this paper applied the single-photon laser induced fluorescence (LIF) and two-photon absorption laser induced fluorescence (TALIF). The plasma jet with needle-cylinder electrode structure was excited by nanosecond pulsed power supply. ①OH radical and O atom in the plasma jet have a lifetime of 1 ms and 3ms, respectively. They are much longer than the duration time of pulse discharge. ②By fitting the decay curve of fluorescence intensity of OH radical vs time, the absolute density of OH radical is estimated to be 1012~1013cm-3. ③The densities of both active species decrease monotonically with the increase of the axial distance along the jet. However, it's surprising to observe that there are still a large amount of active species at even several cm far away from the jet nozzle. ④The increased excitation frequency and pulse voltage result in the increased density of active species. Moreover, with the increase of the concentration of H2O impurities in helium gas, OH radical density decreases after reaching a maximum value at 2.7×1013cm-3 for H2O concentration of 120 ppm. The behavior of O atom density shows the same tendency with the increase of O2 percentage in helium. The inflection point corresponding to the peak density of O atom occurs at the O2 percentage of 0.5%. This study provides an important scientific basis for regulation and optimization of the densities of OH radicals and O atom in low temperature plasma jets.
吴淑群, 董熙, 裴学凯, 岳远富, 卢新培. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8): 82-94.
Wu Shuqun, Dong Xi, Pei Xuekai, Yue Yuanfu, Lu Xinpei. Laser Induced Fluorescence Diagnostics of the Temporal and Spatial Distribution of OH Radicals and O Atom in a Low Temperature Plasma Jet at Atmospheric Pressure. Transactions of China Electrotechnical Society, 2017, 32(8): 82-94.
[1] Shao T, Yang W, Zhang C, et al. Enhanced surface flashover strength in vacuum of polymethylmeth- acrylate by surface modification using atmospheric- pressure dielectric barrier discharge[J]. Applied Physics Letters, 2014, 105(7): 071607-071607(5). [2] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 159-165. [3] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238. [4] 张若兵, 苏善诚, 姜雨泽, 等. 等离子体射流对染污高温硫化硅橡胶憎水特性的影响[J]. 高电压技术, 2015, 41(1): 262-267. Zhang Ruobing, Su Shancheng, Jiang Yuze, et al. Effect of plasma jet on hydrophobicity of conta- minated high temperature vulcanization silicone rubber[J]. High Voltage Engineering, 2015, 41(1): 262-267. [5] Chen Q, Li J, Li Y. A review of plasma-liquid interactions for nanomaterial synthesis[J]. Journalof Physics D-Applied Physics, 2015, 48(42): 424005- 424005-26. [6] Laroussi M. Low-temperature plasma jet for biomedical applications: a review[J]. IEEE Transa- ctions on Plasma Science, 2015, 43(3): 703-712. [7] Keidar M. Plasma for cancer treatment[J]. Plasma Sources Science & Technology, 2015, 24(3): 033001. [8] Wu S, Cao Y, Lu X. The state of the art of applications of atmospheric-pressure nonequilibrium plasma jets in dentistry[J]. IEEE Transactions on Plasma Science, 2016, 44(2): 134-151. [9] 卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6): 1416-1425. Lu Xinpei. Plasma jets and their biomedical appli- cation[J]. High Voltage Engineering, 2011, 37(6): 1416-1425. [10] Lu X, Jiang Z, Xiong Q, et al. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine[J]. Applied Physics Letters, 2008, 92: 081502(2). [11] 吴淑群, 聂兰兰, 卢新培. 大气压非平衡等离子体射流[J]. 高电压技术, 2015, 41(8): 2602-2624. Wu Shuqun, Nie Lanlan, Lu Xinpei. Atmospheric- pressure non-equilibrium plasma jets[J]. High Voltage Engineering, 2015, 41(8): 2602-2624. [12] Lu X, Wu S. On the active species concentrations of atmospheric pressure nonequilibrium plasma jets[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2313-2326. [13] Reuter S, Tresp H, Wende K, et al. From RONS to ROS: tailoring plasma jet treatment of skin cells[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2986-2993. [14] Graves D B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology[J]. Journal of Physics D-Applied Physics, 2012, 45(26): 263001-263042(42). [15] von Woedtke T, Reuter S, Masur K, et al. Plasmas for medicine[J]. Physics Reports-Review Section of Physics Letters, 2013, 530(4): 291-320. [16] 熊紫兰, 卢新培, 曹颖光. 等离子体医学[J]. 中国科学: 技术科学, 2011, 41(10): 1279-1298. Xiong Zilan, Lu Xinpei, Cao Yingguang. Plasma medical science[J]. Science China: Science Technology, 2011, 41(10): 1279-1298. [17] Xiong Q, Lu X P, Ostrikov K, et al. Pulsed DC-and sine-wave-excited cold atmospheric plasma plumes: a comparative analysis[J]. Physics of Plasmas, 2010, 17(4): 043506(8). [18] Kim S J, Chung T H, Bae S H, et al. Bacterial inactivation using atmospheric pressure single pin electrode microplasma jet with a ground ring[J]. Applied Physics Letters, 2009, 94(14): 141502- 141502(3). [19] Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets[J]. Applied Physics Letters, 2008, 93(11): 111501(3). [20] Reuter S, Winter J, Schmidt-Bleker A, et al. Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion[J]. Plasma Sources Science & Technology, 2012, 21(2): 024005-024005(3). [21] Pei X, Lu Y, Wu S, et al. A study on the temporally and spatially resolved OH radical distribution of a room-temperature atmospheric-pressure plasma jet by laser-induced fluorescence imaging[J]. Plasma Sources Science & Technology, 2013, 22(2): 025023- 025023(6). [22] Jiang C, Carter C. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric- pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy[J]. Plasma Sources Science & Technology, 2014, 23(6): 065006- 065006(10). [23] Yonemori S, Nakagawa Y, Ono R, et al. Measure- ment of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet[J]. Journal of Physics D-Applied Physics, 2012, 45(22): 225202. [24] Srivastava N, Wang C. Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet[J]. Journal of Applied Physics, 2011, 110(5): 053304-053304(5). [25] Reuter S, Sousa J S, Stancu G D, et al. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets[J]. Plasma Sources Science & Technology, 2015, 24(5): 054001(41). [26] Lu X, Naidis G V, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport and biological effects[J]. Physics Reports, 2016, 630: 1-84. [27] Yang H, Feng C, Gao L, et al. Average OH density in alternating current dielectric barrier discharge by laser-induced fluorescence technique[J]. Japanese Journal of Applied Physics, 2015, 54(10): 106201. [28] 刘忠伟, 赵国利, 王健, 等. 介质阻挡放电等离子体中OH自由基的光腔衰荡光谱原位诊断[J]. 核聚变与等离子体物理, 2008, 28(2): 167-171. Liu Zhongwei, Zhao Guoli, Wang Jian, et al. In situ measurements of OH radicals in dielectric barrier discharge plasma with cw-cavity ring-down spectros- copy[J]. Nuclear Fusion and Plasma Physics, 2008, 28(2): 167-171. [29] Xiong Q, Nikiforov A Y, Li L, et al. Absolute OH density determination by laser induced fluorescence spectroscopy in an atmospheric pressure RF plasma jet[J]. The European Physical Journal D, 2012, 66(11): 1-8. [30] Lu X, Jiang Z, Xiong Q, et al. A single electrode room-temperature plasma jet device for biomedical applications[J]. Applied Physics Letters, 2008, 92(15): 151504-151504(3). [31] Dilecce G, Martini L M, Tosi P, et al. Laser induced fluorescence in atmospheric pressure discharges[J]. Plasma Sources Science & Technology, 2015, 24(3): 034007(5). [32] Dilecce G, Ambrico P F, Simek M, et al. LIF diagnostics of hydroxyl radical in atmospheric pressure He-H 2 O dielectric barrier discharges[J]. Chemical Physics, 2012, 398(7): 142-147. [33] Pei X, Wu S, Xian Y, et al. On OH density of an atmospheric pressure plasma jet by laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 2014, 42(51): 1206-1210. [34] Naidis G V. Modelling of OH production in cold atmospheric-pressure He-H 2 O plasma jets[J]. Plasma Sources Science & Technology, 2013, 22(3): 035015(6). [35] Lu X, Naidis G V, Laroussi M, et al. Guided ionization waves: theory and experiments[J]. Physics Reports-Review Section of Physics Letters, 2014, 540(3): 123-166. [36] Xiong Q, Lu X, Xian Y, et al. Experimental investigations on the propagation of the plasma jet in the open air[J]. Journal of Applied Physics, 2010, 107(7): 073302(6). [37] Lu X, Ye T, Cao Y, et al. The roles of the various plasma agents in the inactivation of bacteria[J]. Journal of Applied Physics, 2008, 104(5): 053309(5). [38] Nakagawa Y, Ono R, Oda T. Density and temperature measurement of OH radicals in atmospheric-pressure pulsed corona discharge in humid air[J]. Journal of Applied Physics, 2011, 110(7): 073304(7). [39] Verreycken T, van der Horst R M, Baede A H F M, et al. Time and spatially resolved LIF of OH in a plasma filament in atmospheric pressure He-H 2 O[J]. Journal of Physics D: Applied Physics, 2012, 45(4): 045205- 045205(8). [40] Jeong J Y, Park J, Henins I, et al. Reaction chemistry in the afterglow of an oxygen-helium, atmospheric- pressure plasma[J]. Journal of Physical Chemistry A, 2000, 104(34): 8027-8032. [41] 方志, 钱晨, 姚正秋. 大气压环环电极结构射流放电仿真模型建立及仿真研究[J]. 电工技术学报, 2016, 31(7): 218-228. Fang Zhi, Qian Chen, Yao Zhengqiu. The model and simulation studies for ring-ring electrode structure jet discharge at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 218- 228. [42] Knake N, Reuter S, Niemi K, et al. Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2008, 41(19): 194006.