Output Characteristics of Double Coil Fe-Ga Alloy Transducer
Weng Ling1,2, Cao Xiaoning1,2, Hu Xiuyu1,2, Huang Wenmei1,2, Wang Bowen1,2
1.State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei ProvinceHebei University of Technology Tianjin 300130 China
Abstract:In order to investigate the variation law of strain and output energy of Fe-Ga alloy at different magnetic field frequencies, the double-pole coil Fe-Ga alloy transducer was designed and the static and dynamic output characteristics of the Fe-Ga alloy transducer were studied. Based on the finite element method, the magnetic field distribution of the Fe-Ga rod alloy on the transducer was calculated at different frequencies. The change of electromagnetic energy, magnetic energy storage and output mechanical energy of the Fe-Ga alloy transducer at different magnetic field frequencies is analyzed using the conversion relationship between magnetic energy and mechanical energy. The results show that with the increase of magnetic field, the static output strain and the output displacement of Fe-Ga alloy transducer firstly increase linearly and then tend to saturation. The maximum strain of the static output of Fe-Ga alloy transducer is 80×10-6, the maximum output displacement is 3×10-6 m. The magnetic field of the top and bottom ends of Fe-Ga rod alloy is larger and decreases with the increasing of frequency. The magnetic field of the middle part of Fe-Ga rod alloy is smaller but evenly distributed and increases with the increasing of frequency. The dynamic displacement curves of Fe-Ga alloy transducer are butterfly curves. When the frequency is 50 Hz, the mechanical energy of the Fe-Ga alloy transducer is maximum 69.598 J/m3.
[1] 黄文美, 薛胤龙, 王莉, 等. 考虑动态损耗的超磁致伸缩换能器的多场耦合模型[J]. 电工技术学报, 2016, 31(7): 173-178.Huang Wenmei, Xue Yinlong, Wang Li, et al. Multi-field coupling model considering dynamic losses for giant magnetostrictive transducers[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 173-178. [2] 蔡万宠, 冯平法, 郁鼎文. 超磁致伸缩换能器预应力优化设计方法研究[J]. 振动、测试与诊断, 2017, 37(1): 48-52.Cai Wanchong, Feng Pingfa, Yu Dingwen. Research on the optimization design method of prestress for giant magnetostrictive transducer[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(1): 48-52. [3] 翁玲, 赵青, 孙英, 等. 考虑附加涡流损失的Galfenol合金动态滞后建模与实验[J]. 农业机械学报, 2016, 47(4): 399-405.Weng Ling, Zhao Qing, Sun Ying, et al. Dynamic hysteresis model and experiment of Galfenol alloy considering excess eddy current losses[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(4): 399-405. [4] 翁玲, 罗柠, 张露予, 等. Fe-Ga合金磁特性测试装置的设计与实验[J]. 电工技术学报, 2015, 30(2): 237-241.Weng Ling, Luo Ning, Zhang Luyu, et al. Design and experiment of a testing device for Fe-Ga magnetic properties[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 237-241. [5] Huang Wenmei, Li Yafang, Weng Ling, et al.Multifield coupling model with dynamic losses for giant magnetostrictive transducer[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [6] 吴胜男, 唐任远, 韩雪岩, 等. 磁致伸缩引起的非晶合金铁心振动解析计算及影响因素[J]. 电工技术学报, 2016, 31(20): 73-82.Wu Shengnan, Tang Renyuan, Han Xueyan, et al. Analytical calculation and influence factors of vibration in amorphous metal cores[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 73-82. [7] 金亮, 寇晓斐, 郭富坤, 等. 基于电磁超声换能器的铁磁材料电磁声发射检测方法[J]. 电工技术学报, 2017, 32(18): 98-105.Jin Liang, Dou Xiaofei, Guo Fukun, et al. Electromagnetic acoustic emission detection method of ferromagnetic materials based on the EMAT[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 98-105. [8] 刘素贞, 张严伟, 张闯, 等. 电磁超声激励系统阻抗匹配网络的设计[J]. 电工技术学报, 2016, 31(16): 1-6.Liu Suzhen, Zhang Yanwei, Zhang Chuang, et al. Design of impedance matching network for electromagnetic ultrasonic excitation system[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 1-6. [9] Reddy S M, Park J J, Na S, et al.Electrochemical synthesis of magnetostrictive Fe-Ga/Cu multilayered nanowire arrays with tailored magnetic response[J]. Advanced Functional Materials, 2011, 21(24): 4677-4683. [10] Aljanaideh O, Al-Tahat M D, Janaideh M A. Rate-bias-dependent hysteresis modeling of a magnetostrictive transducer[J]. Microsystem Technologies, 2016, 22(4): 883-892. [11] Zhu Z W, Guo C, Wang H L, et al.Stochastic nonlinear dynamic characteristics and control of Fe-Ga cantilever nanobeam with nonlocal effect[J]. Journal of Superconductivity & Novel Magnetism, 2016, 30(6): 1-5. [12] 张洪平, 徐立红, 王蕾, 等. Fe81Ga19磁致伸缩合金的动态磁导率研究[J]. 金属功能材料, 2010, 17(2): 20-22.Zhang Hongping, Xu Lihong, Wang Lei, et al. Dynamic magnetic permeability of Fe81Ga19 magnetostrictive alloy[J]. Metallic Functional Materials, 2010, 17(2): 20-22. [13] Clark A E, Restorff J B, Wun-Fogle M, et al.Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3238-3240. [14] 李英明, 莫喜平, 柴勇, 等. 铁镓复合棒换能器设计及非线性驱动研究[J]. 声学学报, 2016(3): 428-434.Li Yingming, Mo Xiping, Chai Yong, et al. Research on nonlinear driving manner of Galfenol transducer[J]. Acta Acustica, 2016(3): 428-434. [15] 李英明, 莫喜平, 潘耀宗, 等. 铁镓驱动弯曲圆盘换能器设计及振动特性研究[J]. 应用声学, 2016, 35(6): 471-479.Li Yingming, Mo Xiping, Pan Yaozong, et al. Flexural vibration of bender disk transducer driven by Galfenol[J]. Journal of Applied Acoustics, 2016, 35(6): 471-479. [16] 张艳丽, 李强, 王洋洋, 等. 谐波磁场下硅钢片磁致伸缩特性分析[J]. 电工技术学报, 2015, 30(14): 545-550.Zhang Yanli, Li Qiang, Wang Yangyang, et al. Analysis on magnetostrictive properties of silicon steel sheet under harmonic magnetic field[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 545-550. [17] 张黎, 王国政, 董攀婷, 等. 基于磁致伸缩本征特性的晶粒取向性变压器铁心振动模型[J]. 中国电机工程学报, 2016, 36(14): 3990-4000.Zhang Li, Wang Guozheng, Dong Panting, et al. Study on the vibration of grain-oriented transformer core based on the magnetostrictive intrinsic characteristics[J]. Proceedings of the CSEE, 2016, 36(14): 3990-4000. [18] 陈志中. 超磁致伸缩材料特性及其换能器测试技术研究[D]. 天津: 河北工业大学, 2011. [19] 韩光泽, 朱小华. 介质中的电磁能量密度及其损耗[J]. 郑州大学学报(理学版), 2012, 44(3): 81-86. Han Guangze, Zhu Xiaohua.Electromagnetic energy density and loss in medium[J]. Journal of Zhengzhou University (Natural Science Edition), 2012, 44(3): 81-86. [20] 王博文. 超磁致伸缩材料制备与器件设计[M]. 北京: 冶金工业出版社, 2003. [21] 卢诗华, 于歆杰, 楼国锋. 一种基于磁电层合材料的新结构大电流传感器[J]. 电工技术学报, 2016, 31(23): 70-76.Lu Shihua, Yu Xinjie, Lou Guofeng. A new magnetoelectric laminate based high-current sensor[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 70-76.