Abstract:The cooling optimization design is a crucial part of a power electronics building block (PEBB) unit. A better heat dissipation system increases power intensity of PEBB and keeps insulated gate bipolar transistor (IGBT) modules on well operation. In this paper, power loss of IGBT modules in the PEBB unit is calculated in detail. Thermal simulation on a design example of the PEBB unit is analyzed by the computational fluid dynamics (CFD) software named ICEPAK. By changing structural parameters of the heatsink in the PEBB unit, the influence of parameters on heat transfer performance is obtained. Then the paper presents a structural optimization scheme of the heatsink through a curve fitting and extreme value seeking analysis. Finally the feasibility of thermal simulation is verified by comparing simulation results with experimental data, and the directive significance of the simulation on system-level thermal optimization design is proved.
陈国栋, 刘宏, 王江涛. 基于曲线拟合的PEBB单元散热优化设计[J]. 电工技术学报, 2016, 31(4): 71-78.
Chen Guodong, Liu Hong, Wang Jiangtao. Thermal Analysis and Optimization of PEBB Unit Based on Curve Fitting. Transactions of China Electrotechnical Society, 2016, 31(4): 71-78.
[1] 程启明, 程尹曼, 薛阳, 等. 三相电压源型PWM整流器控制方法的发展综述[J]. 电力系统保护与控制, 2012, 40(3): 145-155. Cheng Qiming, Cheng Yinman, Xue Yang, et al. A summary of current control methods for three-phase voltage-source PWM rectifiers[J]. Power System Protection and Control, 2012, 40(3): 145-155. [2] 王红玲, 张元敏, 方波. 基于CPWM控制方式的正弦波逆变器电路设计[J]. 电力系统保护与控制, 2009, 37(2): 76-79. Wang Hongling, Zhang Yuanmin, Fang Bo. Design of sine-wave inverter based on CPWM control model[J]. Power System Protection and Control, 2009, 37(2): 76-79. [3] 陈明, 胡安, 刘宾礼, 等. 绝缘栅双极型晶体管失效机理与寿命预测模型分析[J]. 西安交通大学学报, 2011, 45(10): 65-71. Chen Ming, Hu An, Liu Binli, et al. Failure mechanism and lifetime prediction modeling of IGBT power electronic devices[J]. Journal of Xi'an Jiaotong University, 2011, 45(10): 65-71. [4] 刘德红, 王向军, 嵇斗, 等. 基于钎焊技术的大功率PEBB散热器性能分析[J]. 电力电子技术, 2013, 47(2): 41-43. Liu Dehong, Wang Xiangjun, Ji Dou, et al. Thermal performance analysis of high power PEBB heatsink based on vacuum brazed technique[J]. Power Electronics, 2013, 47(2): 41-43. [5] 张明元, 沈建清, 李卫超, 等. 一种快速IGBT损耗计算方法[J].船电技术, 2009, 29(1): 33-36. Zhang Mingyuan, Shen Jianqing, Li Weichao, et al. Calculation method of a fast power loss for IGBT modules[J]. Marine Electric & Electronic Technology, 2009, 29(1): 33-36. [6] 胡建辉, 李锦庚, 邹继斌, 等. 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24(3): 159-163. Hu Jianhui, Li Jingeng, Zou Jibin, et al. Losses calculation of IGBT module and heat dissipation system design of inverters[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 159-163. [7] 刘建涛, 王治华, 王珂. 不同结构电压源换流器损耗对比分析[J]. 电力系统保护与控制, 2013, 41(6): 105-110. Liu Jiantao, Wang Zhihua, Wang Ke. Comparative analysis of losses of voltage source converters with different structures[J]. Power System Protection and Control, 2013, 41(6): 105-110. [8] 朱艺锋, 葛琼璇, 刘育红, 等. 75kVA三电平背靠背变流器的散热分析及优化[J]. 电工技术学报, 2012, 27(2): 103-108. Zhu Yifeng, Ge Qiongxuan, Liu Yuhong, et al. Analysis and optimization of cooling system for 75kVA three-level back-back converter[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 103-108. [9] 杜毅, 廖美英. 逆变器中IGBT模块的损耗计算及其散热系统设计[J]. 电气传动自动化, 2011, 33(1): 42-46. Du Yi, Liao Meiying. Losses calculation of IGBT module and heat dissipation system design of inverters[J]. Electrical Drive Automation, 2011, 33(1): 42-46. [10] 付桂翠, 高泽溪. 影响功率器件散热器散热性能的几何因素分析[J]. 电子器件, 2003, 26(4): 354-356, 460. Fu Guicui, Gao Zexi. Analysis of geometric factors on effect upon the capability of heat sink of power component[J]. Chinese Journal of Electron Devices, 2003, 26(4): 354-356, 460. [11] 刘玉芬, 程洪亮. 变频器的热耗计算及散热分析[J]. 电气制造, 2008, 8(3): 60-62. Liu Yufen, Cheng Hongliang. Power loss calculation and heat dissipation analysis of inverters[J]. Electrical Manufacturing, 2008, 8(3): 60-62. [12] 李文顶, 莫锦秋, 曹家勇. 中压矿用变频器主电路损耗分析及散热设计[J]. 机电工程技术, 2009, 38(7): 85-87, 181. Li Wending, Mo Jinqiu, Cao Jiayong. Loss analysis and thermal design of mid voltage & mine-used inverter main circuit[J]. Mechanical & Electrical Engineering Technology, 2009, 38(7): 85-87, 181. [13] Xu D W, Lu H W, Huang L P, et al. Power loss and junction temperature analysis of power semiconductor devices[J]. IEEE Transactions on Industry Applications, 2002, 38(5): 1426-1431. [14] 谭国俊, 景巍. 有源钳位三电平变频器及其结温平衡控制[J]. 电工技术学报, 2012, 27(2): 97-102. Tan Guojun, Jing Wei. Active neutral point clamped three-level converter and its junction temperature balancing control[J]. Transactions of China Electro-technical Society, 2012, 27(2): 97-102. [15] Casanellas F. Losses in PWM inverters using IGBTs[J]. IEE Proceedings-Electric Power Applications, 1994, 141(5): 235-239. [16] 王群京, 陈权, 姜卫东, 等. 中点钳位型三电平逆变器通态损耗分析[J]. 电工技术学报, 2007, 22(3): 66-71, 90. Wang Qunjing, Chen Quan, Jiang Weidong, et al. Analysis of conduction losses in neutral-point-clamped three-level inverter[J]. Transactions of China Electro- technical Society, 2007, 22(3): 66-71, 90. [17] 杨世铭, 陶文铨. 传热学[M]. 西安: 西北工业大学出版社, 2006. [18] 诸凯, 李媛媛, 陆佩强, 等. 高性能热管散热器的实验研究与数值模拟[J]. 工程热物理学报, 2010, 31(11): 1945-1947. Zhu Kai, Li Yuanyuan, Lu Peiqiang, et al. Experimental study and numerical simulation of high performance heat pipe radiator[J]. Journal of Engineering Thermo- 19 physics, 2010, 31(11): 1945-1947. [19] 刘一兵. 功率器件散热技术的研究[J]. 湖南工业大学学报, 2007, 21(4): 77-79. Liu Yibing. Research on heat dissipation technology for power device[J]. Journal of Hunan University of Technology, 2007, 21(4): 77-79. [20] 揭贵生, 孙驰, 汪光森, 等. 大容量电力电子装置中板式水冷散热器的优化设计[J]. 机械工程学报, 2010, 46(2): 99-105. Jie Guisheng, Sun Chi, Wang Guangsen, et al. Opti- mization design of water-cooled heat sink applied to large-capacity power electronic equipment[J]. Journal of Mechanical Engineering, 2010, 46(2): 99-105. [21] 赵臣烜, 张珏, 张言安. 基于ICEPAK的散热器优化设计[J]. 机械工程师, 2013, 29(6): 124-126. Zhao Chenxuan, Zhang Jue, Zhang Yanan. The optimum thermal design of heat sink based on ICEPAK[J]. Mechanical Engineer, 2013, 29(6): 124-126. [22] Ning P, Lei G, Wang F, et al. Selection of heatsink and fan for high-temperature power modules under weight constraint[C]//IEEE Applied Power Electronics Conference and Exposition, 2008: 192-198.