电工技术学报  2016, Vol. 31 Issue (4): 64-70    DOI:
电机与电器 |
基于模糊聚类和完全二叉树支持向量机的变压器故障诊断
李赢, 舒乃秋
武汉大学电气工程学院 武汉 430072
Transformer Fault Diagnosis Based on Fuzzy Clustering and Complete Binary Tree Support Vector Machine
Li Ying, Shu Naiqiu
School of Electrical Engineering Wuhan University Wuhan 430072 China
全文: PDF (389 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提高电力变压器故障诊断准确率,提出基于模糊聚类和完全二叉树支持向量机的故障诊断模型,即通过模糊C均值聚类,对样本采用完全二叉树结构逐层划分,直至最后得到各故障分类。该方法克服了一般方法对故障划分不明确、分类重叠和不可分等缺点。试验表明,相比改良三比值法、支持向量机分类“一对一”和“一对多”组合,该方法在电力变压器故障诊断中具有最高的诊断准确率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李赢
舒乃秋
关键词 变压器油中溶解气体模糊聚类完全二叉树支持向量机    
Abstract:To improve the accuracy of power transformer diagnosis, the fault diagnosis model is proposed based on fuzzy clustering and complete binary tree support vector machine (SVM). That is, through fuzzy C-means clustering, samples are divided layer by layer using complete binary tree structure until the fault classification is completed. Compared with general approaches, the method overcomes the shortcomings of unclear division and overlap classification of fault types. The method obtains the highest diagnostic accuracy among the methods mentioned in this paper.
Key wordsTransformer dissolved gases in oil    fuzzy clustering    complete binary tree    support vector machine   
     出版日期: 2016-03-03
PACS: TM411  
作者简介: 舒乃秋 男,1954年生,博士,教授,博士生导师,研究方向为电力设备在线监测及故障诊断。E-mail: shunaiqiu@21cn.com
引用本文:   
李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016, 31(4): 64-70. Li Ying, Shu Naiqiu. Transformer Fault Diagnosis Based on Fuzzy Clustering and Complete Binary Tree Support Vector Machine. Transactions of China Electrotechnical Society, 2016, 31(4): 64-70.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/Y2016/V31/I4/64