Research on Nonlinear Dynamic Electromagnetic Network Model of Magnetically-Saturated Controllable Reactor
Wang Tiange1,2,3, Tian Mingxing1,3, Yin Lu1,3, Tian Wenjun1,3
1. School of Automation & Electrical Engineering Lanzhou Jiaotong University Lanzhou 730070 China; 2. Shaanxi Railway Institute Weinan 714000 China; 3. Gansu Province Engineering Laboratory for Rail Transit Electrical Automation Lanzhou Jiaotong University Lanzhou 730070 China
Abstract:With the increasing scale of urban power grids and the application of various advanced power equipment, the comprehensive efficiency of the power system depends on the cooperation and synergy between various power equipment. Aiming at the physical entities with dynamic and real-time changes in the state of power equipment, constructing an efficient mathematical model is essential in system-level simulation of power systems and integrated design of large electromagnetic equipment. Taking the magnetically-saturated controllable reactor (MSCR) as the object, this paper proposes a nonlinear dynamic electromagnetic network model, considering the accuracy of theoretical analysis and the efficiency of parameter calculation. Firstly, according to the structural characteristics and magnetic field distribution characteristics of MSCR, the MSCR solution domain is meshed by domain discretization. Considering the nonlinearity of the iron core, the magnetization curve model of the MSCR iron core is established by the piecewise interpolation method. The nonlinear grid parameters are calculated according to the principle of the flux tube. The MSCR equivalent magnetic network model is generated based on the loop current method. Secondly, the electromagnetic model of circuit-magnetic circuit separation is established. The electromagnetic coupling equivalent circuit is established using the controlled source to realize the coupling connection between the circuit and the magnetic circuit. The nonlinear dynamic electromagnetic network model of MSCR is generated. Combined with the nonlinear iterative solution of the chord-cut method, the MSCR winding current and the core flux under different magnetic saturations are calculated. Finally, a three-dimensional finite element model of MSCR is established based on the finite element method, and field-circuit coupling joint simulation is carried out. Experimental measurements are also performed on the MSCR winding current. The MSCR nonlinear dynamic electromagnetic network model is compared with the three-dimensional finite element model and experimental measurements. The MSCR nonlinear dynamic electromagnetic network model is verified. (1) The proposed model's calculated winding current and core flux agree with the finite element model and experimental results under different magnetic saturations. (2) The calculation speed and the storage space of the proposed model in electromagnetic parameter calculation are approximately 50~240 times and 1/10 000~1/7 000 of the finite element model. The model can improve calculation efficiency and reduce cost while meeting computational accuracy. It has unique advantages in the initial design of controllable reactors and system-level simulation of power systems.
[1] 何正友, 李波, 廖凯, 等. 新形态城市电网保护与控制关键技术[J]. 中国电机工程学报, 2020, 40(19): 6193-6207. He Zhengyou, Li Bo, Liao Kai, et al.Key tech-nologies for protection and control of novel urban power grids[J]. Proceedings of the CSEE, 2020, 40(19): 6193-6207. [2] 滕贤亮, 谈超, 昌力, 等. 高比例新能源电力系统有功功率与频率控制研究综述及展望[J]. 电力系统自动化, 2023, 47(15): 12-35. Teng Xianliang, Tan Chao, Chang Li, et al.Review and prospect of research on active power and frequency control in power system with high pro-portion of renewable energy[J]. Automation of Electric Power Systems, 2023, 47(15): 12-35. [3] 陈冲, 贾利民, 赵天宇, 等. 去碳化导向的轨道交通与新能源融合发展: 形态模式、解决方案和使/赋能技术[J]. 电工技术学报, 2023, 38(12): 3321-3337. Chen Chong, Jia Limin, Zhao Tianyu, et al.Decarbonization-oriented rail transportation and renewable energy integration development: con-figurations, solutions, and enabling/empowering technologies[J]. Transactions of China Electro-technical Society, 2023, 38(12): 3321-3337. [4] Shen Shifeng, Wu Xusheng, Yan Sinian, et al.Research on the characteristics of a high-temperature superconducting leakage flux-controlled reactor[J]. IEEE Transactions on Industrial Electronics, 2022, 69(10): 10101-10111. [5] 马伟明, 王东, 程思为, 等. 高性能电机系统的共性基础科学问题与技术发展前沿[J]. 中国电机工程学报, 2016, 36(8): 2025-2035. Ma Weiming, Wang Dong, Cheng Siwei, et al.Common basic scientific problems and development of leading-edge technology of high performance motor system[J]. Proceedings of the CSEE, 2016, 36(8): 2025-2035. [6] Yuan Jiaxin, Zheng Xianfeng, Chen Fan.Analysis and optimized design of a novel compact orthogonal controllable reactor[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4527-4538. [7] 袁佳歆, 叶丛韬, 陈鹤冲, 等. 基于非正交解耦原理的紧凑型高压交流磁饱和限流器研究[J]. 高电压技术, 2023, 49(3): 1172-1183. Yuan Jiaxin, Ye Congtao, Chen Hechong, et al.Research on compact high-voltage saturated core fault current limiter based on non-orthogonal decoupling principle[J]. High Voltage Engineering, 2023, 49(3): 1172-1183. [8] 田铭兴, 王田戈, 张慧英, 等. 可控电抗器研究综述及展望[J]. 吉林大学学报(工学版), 2023, 53(2): 328-345. Tian Mingxing, Wang Tiange, Zhang Huiying, et al.Overview and prospect of controllable reactor[J]. Journal of Jilin University (Engineering and Tech-nology Edition), 2023, 53(2): 328-345. [9] 王青朋, 白保东, 陈德志, 等. 800kV超高压磁饱和可控电抗器的动态特性分析及谐波抑制[J]. 电工技术学报, 2020, 35(增刊1): 235-242. Wang Qingpeng, Bai Baodong, Chen Dezhi, et al.Dynamic characteristics and harmonic suppression of 800kV extra-high voltage magnetically saturation controlled reactor[J]. Transactions of China Electro-technical Society, 2020, 35(S1): 235-242. [10] Zhang Huiying, Tian Mingxing, Jing Pei.Effect of magnetization curve model and winding connection mode on magnetically saturated controllable reactor based on ANSYS[C]//2019 22nd International Con-ference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019: 1-5. [11] Chen Xuxuan, Wang Bin.Optimal design and modeling of the multi-stage saturable magnetically controlled reactor[C]//2017 Progress In Electro-magnetics Research Symposium-Spring (PIERS), St. Petersburg, Russia, 2017: 76-81. [12] Xu Xiangzheng.Research on magnetic valve structure optimization of magnetic controlled reactor[J]. The Open Mechanical Engineering Journal, 2014, 8(1): 655-661. [13] Liang Yanping, Zhang Fang, Zhang Haiting, et al.Leakage inductance calculation and simulation research of extra-high voltage magnetically controlled shunt reactor[C]//2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 2010: 4025-4028. [14] Dong Liwei, Tian Mingxing, Zhang Huiying.Magnetic circuit model of magnetic valve controllable reactor considering magnetic flux leakage effect[C]//2021 International Conference on Mechatronics Tech-nology and Intelligent Manufacturing, Hangzhou, China, 2021: 1-7. [15] Zhang Huiying, Tian Mingxing, Li Hongchen, et al.Improved gyrator-capacitor model considering eddy current and excess losses based on loss separation method[J]. AIP Advances, 2020, 10(3): 035309. [16] 田铭兴, 石鹏太, 马亚珍. n级饱和磁阀式可控电抗器结构特性和仿真方法[J]. 电力自动化设备, 2016, 36(2): 95-101. Tian Mingxing, Shi Pengtai, Ma Yazhen.Structural property and simulation method of n-stage saturable magnetic-valve controllable reactor[J]. Electric Power Automation Equipment, 2016, 36(2): 95-101. [17] Xing Tianming, Sheng Yuandong, Hong Yan.Harmo-nic characteristic analysis of magnetically saturation controlled reactor[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 11(8): 4214-4221. [18] Turowski J, Turowski M, Kopec M.Method of three-dimensional network solution of leakage field of three-phase transformers[J]. IEEE Transactions on Magnetics, 1990, 26(5): 2911-2919. [19] Worotyński J, Turowski M, Mendrela E A.The accuracy of calculation of magnetic fields, inductance and forces in electromagnetic devices using the reluctance network method (RNM)[J]. COMPEL-the International Journal for Computation and Mathe-matics in Electrical and Electronic Engineering, 1994, 13(1): 159-162. [20] 夏云彦, 周洲, 邵远亮, 等. 基于动态磁网络法大型感应电机阻抗参数及起动特性计算[J]. 电工技术学报, 2024, 39(14): 4341-4352. Xia Yunyan, Zhou Zhou, Shao Yuanliang, et al.Calculation of impedance parameters and starting characteristics of large induction motor based on dynamic magnetic network[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4341-4352. [21] 佟文明, 王萍, 吴胜男, 等. 基于三维等效磁网络模型的混合励磁同步电机电磁特性分析[J]. 电工技术学报, 2023, 38(3): 692-702. Tong Wenming, Wang Ping, Wu Shengnan, et al.Electromagnetic performance analysis of a hybrid excitation synchronous machine based on 3D equivalent magnetic network[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 692-702. [22] 杨云, 徐奇伟, 苗轶如, 等. 磁力提升型CRDM的动态等效磁网络模型建立与多场耦合计算方法[J/OL]. 电工技术学报, 2024: 1-14. (2024-08-27). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DGJS20240823005&dbname=CJFD&dbcode=CJFQ. Yang Yun, Xu Qiwei, Miao Yiru, et al. Establishment of dynamic equivalent magnetic network model and multi-field coupling calculation method for magnetic lift CRDM[J/OL]. Transactions of China Electro-technical Society, 2024:1-14. (2024-08-27). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DGJS-20240823005&dbname=CJFD&dbcode=CJFQ. [23] Jan K Sykulski.Computational magnetics[M]. London, England: Chapman & Hall, 1995. [24] 田铭兴, 马亚珍, 石鹏太. 磁阀式可控电抗器磁化特性研究[J]. 高压电器, 2019, 55(4): 125-132. Tian Mingxing, Ma Yazhen, Shi Pengtai.Research on magnetization characteristic of magnetic-valve con-trollable reactor[J]. High Voltage Apparatus, 2019, 55(4): 125-132. [25] 李永建, 李宗明, 利雅婷, 等. 考虑磁-力耦合效应的混合磁滞模型研究[J]. 电工技术学报, 2024, 39(22): 6941-6951. Li Yongjian, Li Zongming, Li Yating, et al.Study of hybrid hysteresis model considering magnetic-force coupling effect[J]. Transactions of China Elec-trotechnical Society, 2024, 39(22): 6941-6951. [26] 刘任, 杜莹雪, 李琳, 等. 解析逆Preisach磁滞模型[J]. 电工技术学报, 2023, 38(10): 2567-2576. Liu Ren, Du Yingxue, Li Lin, et al.Analytical inverse Preisach hysteresis model[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2567-2576. [27] Fu Dongshan, Gong Jinlin, Xu Yanliang, et al.Coupled circuit and magnetic model for a transverse flux permanent magnet linear motor[J]. IEEE Access, 2020, 8: 159274-159283. [28] 陈柏超. 新型可控饱和电抗器理论及应用[M]. 武汉: 武汉水利电力大学出版社, 1999. [29] Cao Donghui, Zhao Wenxiang, Ji Jinghua, et al.A generalized equivalent magnetic network modeling method for vehicular dual-permanent-magnet vernier machines[J]. IEEE Transactions on Energy Con-version, 2019, 34(4): 1950-1962.