Parameter Extraction and FEM Simulation of Giant Magnetostrictive Transducer Considering Losses
Wei Yanfei1, Yang Xin1, Chen Yukai1, Yang Mingzhi1, Yao Rui2
1. National Engineering Research Center for Power Conversion and Control Hunan University Changsha 410082 China; 2. Hunan Aerospace Magnetoelectric Co. Ltd Changsha 410219 China
Abstract:Finite element method (FEM) is an important means for transducer design. As the core of the giant magnetostrictive transducer, giant magnetostrictive rods generate electromagnetic losses, mechanical losses and magnetic coupling losses in operation. The magnetostrictive module in the existing FEM simulation software is unable to calculate the losses of the giant magnetostrictive transducer under multi-field coupling, and what’s more, the parameters of the giant magnetostrictive material under different working conditions are unavailable, which causes huge errors in transducer design. Therefore, compared with the piezoelectric module, magnetostrictive module in FEM software is still not widely used. In this paper, by comparing the FEM governing equations of piezoelectric electromechanical coupling and magnetostrictive electromechanical coupling, the FEM simulation of giant magnetostrictive transducer is realized by using the piezoelectric module, and losses are considered by using complex quantities of material parameters. For characteristic parameters of giant magnetostrictive material, the plane wave method (PWM) is applied on the test platform of magneto-mechanical coupling characteristics for impedance modeling analysis, material parameters are extracted through the particle swarm algorithm under different pre-stress conditions, and these parameters are used in COMSOL Multiphysics for harmonic response analysis. The results obtained are in good agreement with those obtained in experiments and PWM model, which proves the feasibility and accuracy of the proposed method.
韦艳飞, 杨鑫, 陈钰凯, 杨明智, 姚锐. 计及损耗的超磁致伸缩材料参数提取及有限元仿真应用[J]. 电工技术学报, 2022, 37(7): 1726-1734.
Wei Yanfei, Yang Xin, Chen Yukai, Yang Mingzhi, Yao Rui. Parameter Extraction and FEM Simulation of Giant Magnetostrictive Transducer Considering Losses. Transactions of China Electrotechnical Society, 2022, 37(7): 1726-1734.
[1] 赵贵恒, 刘永庆, 张洪平. 酚醛粘结TbDyFe稀土磁致伸缩材料研究[J]. 粉末冶金工业, 2019, 29(6): 55-60. Zhao Guiheng, Liu Yongqing, Zhang Hongping.Study on phenolic bonded TbDyFe magnetostrictive materials[J]. Powder Metallurgy Industry, Powder Metallurgy Industry, 2019, 29(6): 55-60. [2] 翁玲, 梁淑智, 王博文, 等. 考虑预应力的双励磁线圈铁镓换能器输出特性[J]. 电工技术学报, 2019, 34(23): 4859-4869. Weng Ling, Liang Shuzhi, Wang Bowen, et al.Output characteristics of double-excited coil Fe-Ga transducer considering pre-stress[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4859-4869. [3] 赵能桐, 杨鑫, 陈钰凯, 等. 考虑超磁致伸缩材料非均匀性的大功率电声换能器阻抗特性[J]. 电工技术学报, 2021, 36(10): 1999-2006. Zhao Nengtong, Yang Xin, Chen Yukai, et al.The impedance characteristics of high power electroacoustic transducers considering the inhomogeneity of giant magnetostrictive materials[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 1999-2006. [4] Van Thinh N, Le H T M. Researching the design model effect to the characteristic parameters of the power ultrasonic transducer by the COMSOL-MULTIPHYSICS software[J]. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2019, 8(6): 158-161. [5] 刘素贞, 王淑娟, 张闯, 等. 钢板电磁超声表面波的仿真分析及缺陷定量检测[J]. 电工技术学报, 2020, 35(1): 97-105. Liu Suzhen, Wang Shujuan, Zhang Chuang, et al.Simulation analysis of electromagnetic acoustic surface wave of steel plate and quantitative defect detection[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 97-105. [6] 翁玲, 李薇娜, 曹晓宁, 等. 环形Fe-Ga合金动态磁导率和损耗分析[J]. 电工技术学报, 2019, 34(3): 15-21. Weng Ling, Li Weina, Cao Xiaoning, et al.Analysis of dynamic permeability and energy loss of ring-shaped Fe-Ga alloy[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 15-21. [7] 翁玲, 常振, 孙英, 等. 不同磁致伸缩材料的高频磁能损耗分析与实验研究[J]. 电工技术学报, 2020, 35(10): 5-13. Weng Ling, Chang Zhen, Sun Ying, et al.Analysis and experimental study on high frequency magneto-strictive energy loss of different magnetos[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 5-13. [8] 隋晓梅, 赵章荣. 超磁致伸缩执行器电-磁-机耦合场分步有限元模型分析[J]. 现代制造工程, 2012(6): 14-17. Sui Xiaomei, Zhao Zhangrong.Finite element analysis of electric-magnet-mechanic coupled field model for GMA[J]. Modern Manufacturing Engineering, 2012(6): 14-17. [9] Slaughter J C.Coupled structural and magnetic models: linear magnetostriction in Comsol[C]//Proceedings of COMSOL Conference, Bangalore, 2009: 1-4. [10] 莫喜平. ANSYS软件在模拟分析声学换能器中的应用[J]. 声学技术, 2007(6): 1279-1290. Mo Xiping.The application of ANSYS software in the analog analysis of acoustic transducer[J]. Technical Acoustics, 2007(6): 1279-1290. [11] Malyarenko A, Ostoja-Starzewski M, Amiri-Hezaveh A.The continuum theory of piezoelectricity and piezomagnetism[M]. Cham: Springer, 2020: 1-24. [12] 刘素贞, 武云海, 张闯, 等. 静态偏置磁场强度对铁磁材料电磁超声换能机制的影响[J]. 电工技术学报, 2018, 33(9): 2148-2154. Liu Suzhen, Wu Yunhai, Zhang Chuang, et al.Effect of static bias magnetic field on electromagnetic ultrasonic transducer mechanism of ferromagnetic materials[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2148-2154. [13] Wu Zhengbin, Xi Kui, Zhu Banlan, et al.Theoretical and experimental investigation of ultrasonic transducers with dual oppositely polarized PMN-PT layers in wide frequency range[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2313-2319. [14] Uchino K.High-power piezoelectrics and loss mechanisms[M]. England: Woodhead Publishing, 2017. [15] Dong Yangyang, Wu Zhengbin, Hu Hong, et al.A novel method for characterization of piezoelectric material parameters by simulated annealing optimization[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(12): 2613-2615. [16] Hagmann M J.Analysis and equivalent circuit for accurate wideband calculations of the impedance for a piezoelectric transducer having loss[J]. AIP Advances, 2019, 9(8): 085313. [17] Krimholtz R, Leedom D A, Matthaei G L.New equivalent circuits for elementary piezoelectric transducers[J]. Electronics Letters, 1970, 6(13): 398-399. [18] Pérez N, Buiochi F, Andrade M, et al.Numerical characterization of piezoceramics using resonance curves[J]. Materials, 2016, 9(2): 71. [19] Dong X, Majzoubi M, Choi M, et al.A new equivalent circuit for piezoelectrics with three losses and external loads[J]. Sensors and Actuators A: Physical, 2017, 256: 77-83. [20] Feldmann N, Jurgelucks B, Claes L, et al.A sensitivity-based optimisation procedure for the characterisation of piezoelectric discs[C]//2019 International Congress on Ultrasonics, Brussels, 2019: 030004. [21] 滕舵, 杨虎, 李道江. 水声换能器基础[M]. 西安:西北工业大学出版社, 2016. [22] Sun Xuan, Li Shiyang, Dun Xiangming, et al.A novel characterization method of piezoelectric composite material based on particle swarm optimization algorithm[J]. Applied Mathematical Modelling, 2019, 66: 322-331. [23] Claeyssen F, Bossut R, Boucher D.Modeling and characterization of the magnetostrictive coupling[M]. Berlin Heidelberg: Springer, 1991.