Time-Domain Finite Element Method for Calculation of Transient Electric Field in Combined Insulating Structures Considering the Influence of Dielectric Relaxation
Wen Teng, Cui Xiang, Li Xuebao, Liu Sijia, Zhao Zhibin
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China
Abstract:In the actual operation of electric power equipment, it may be subjected to transient voltage excitations such as switching surge voltage, lightning impulse voltage and so on. In addition, with the widespread application of power electronic devices in DC power transmission equipment, the voltage that the insulation structure of the internal devices bears is not traditional AC voltage or DC voltage, but positive repetitive square wave voltage. In order to study the electric field characteristics of the insulating structure in these equipment or devices under transient voltage excitation, it is necessary to calculate the transient electric field distribution under the electro-quasistatic field. Insulating materials exhibit dielectric relaxation phenomenon in the alternating electric field, and their permittivity is a frequency-dependent function in the frequency domain. Due to the short duration time and rapid change of the transient voltage, the corresponding frequency spectrum is wide. Therefore, the calculation of the transient electric field under transient voltage excitation needs to consider the dielectric relaxation characteristics. For this reason, this paper proposes a time-domain finite element method which considers the dielectric relaxation process of the materials. In this paper, the dielectric relaxation phenomenon of the material is characterized by the time-varying permittivity. The governing equation is discretized in time and space. The time-domain finite element equation and the constrained electric field equation on the boundary are derived. Then, the effectiveness of the calculation method proposed in this paper is verified by comparing the experimental results and calculation results of the polarization current of PEEK material under the step voltage. Finally, the distribution characteristics of the transient electric field of the combined insulating structure considering the dielectric relaxation characteristics of the material under transient voltage excitation are analyzed.
文腾, 崔翔, 李学宝, 刘思佳, 赵志斌. 考虑介质介电驰豫影响时瞬态电场计算的时域有限元法[J]. 电工技术学报, 2022, 37(7): 1735-1745.
Wen Teng, Cui Xiang, Li Xuebao, Liu Sijia, Zhao Zhibin. Time-Domain Finite Element Method for Calculation of Transient Electric Field in Combined Insulating Structures Considering the Influence of Dielectric Relaxation. Transactions of China Electrotechnical Society, 2022, 37(7): 1735-1745.
[1] Mitsui K, Wada K.Design of a laminated bus bar optimizing the surge voltage, damped oscillation, and switching loss[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 2737-2745. [2] Smajic J, Steinmetz T, Ruegg M, et al.Simulation and measurement of lightning-impulse voltage distributions over transformer windings[J]. IEEE Transactions on Magnetics, 2014, 50(2): 553-556. [3] Deng Erping, Zhao Zhibin, Xin Qingming, et al.Analysis on the difference of the characteristic between high power IGBT modules and press pack IGBTs[J]. Microelectronics Reliability, 2017, 78: 25-37. [4] 彭程, 李学宝, 张冠柔, 等. 压接型IGBT芯片动态特性实验平台设计与实现[J]. 电工技术学报, 2021, 36(12): 2471-2481. Peng Cheng, Li Xuebao, Zhang Guanrou, et al.Design and implementation of an experimental platform for dynamic characteristics of press-pack IGBT chip[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2471-2481. [5] Haus H A, Melcher J R.Electromagnetic fields and energy[M]. Englewood Cliffs, NJ: Prentice-Hall, 1989. [6] Liu Gang, Li Lin, Ji Feng, et al.Analysis of transient electric field and charge density of converter transformer under polarity reversal voltage[J]. IEEE Transactions on Magnetics, 2012, 48(2): 275-278. [7] Hara T, Natio, Umoto J.Time-periodic finite element method for nonlinear diffusion equations[J].IEEE Transactions on Magnetics,1985, 21(6): 2261-2264. [8] Yamada S, Bessho K.Harmonic field calculation by the combination of finite element analysis and harmonic balance method[J]. IEEE Transactions on Magnetics, 1988, 24(6): 2588-2590. [9] 苑津莎, 张金堂. 计算非线性时变涡流场的有限元方程频域算法[J]. 中国电机工程学报, 1994, 14(3): 7-13. Yuan Jinsha, Zhang Jintang.Finite element method in frequency domain for nonlinear transient field problems[J]. Proceedings of the CSEE, 1994, 14(3): 7-13. [10] 刘刚, 李琳, 纪锋, 等. 基于节点电荷电位有限元法的油纸绝缘结构极性反转电场分析[J]. 中国电机工程学报, 2011, 31(25): 132-138. Liu Gang, Li Lin, Ji Feng, et al.Analysis of polarity reversal electric field of oil-paper insulation based on charge-scalar potential finite element method[J]. Proceedings of the CSEE, 2011, 31(25): 132-138. [11] Wen Teng, Cui Xiang, Li Xuebao, et al.Characterization of electric field distribution within high voltage press-packed IGBT submodules under condition of repetitive turn-on and turn-off[J]. CSEE Journal of Power and Energy Systems, 2022, 8(2): 609-620. [12] Badics Z.Charge density-scalar potential formulation for adaptive time-integration of nonlinear electroquasistatic problems[J]. IEEE Transactions on Magnetic, 2011, 47(5): 1138-1141. [13] 刘刚. 换流变压器交直流复合电场和极性反转电场算法研究[D]. 北京: 华北电力大学, 2012. [14] 朱洒, 卢智鹏, 王卫东, 等. 基于CE-FEA和小信号分析快速计算逆变器供电下聚磁式场调制电机中永磁体涡流损耗[J]. 电工技术学报, 2020, 35(5): 49-57. Zhu Sa, Lu Zhipeng, Wang Weidong, et al.Fast calculation of PM eddy current loss in FCFMPM machine under PWM VSI supply based on CE-FEA and small-signal analysis[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 49-57. [15] 程启问, 万保权, 张建功, 等. 基于误差传递方程的离子流场迎风有限元高精度计算方法[J]. 电工技术学报, 2020, 35(21): 14-20. Cheng Qiwen, Wan Baoquan, Zhang Jiangong, et al.A highly accurate upwind finite element method for ion-flow field based on the error transport equation[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 14-20. [16] Jonscher A K.Dielectric relaxation in solids[M]. London: Chelsea Dielectric Press, 1983. [17] Havriliak S, Negami S.A complex plane representation of dielectric and mechanical relaxation processes in some polymers[J]. Polymer, 1967, 8: 161-210. [18] Dissado L A, Hill R M.Anomalous low-frequency dispersion, near direct current conductivity in disordered low-dimensional materials[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1984, 80(3): 291-319. [19] Jonscher A K.Universal relaxation law[M]. London: Chelsea Dielectrics Press,1996. [20] Yang Xi, Wang Qingyu, Wang Haoran, et al.Transient electric field computation for composite cross-arm in 750 kV AC transmission line under lightning impulse voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 1942-1950. [21] 杨为, 朱太云, 田宇, 等. 雷电冲击电压下GIS盆式绝缘子暂态电场分析[J]. 高电压技术, 2020, 46(3): 807-814. Yang Wei, Zhu Taiyun, Tian Yu, et al.Analysis for transient electric field computation of GIS basin insulator under lightning impulse voltage[J]. High Voltage Engineering, 2020, 46(3): 807-814. [22] Gao Youhua, Wang Erzhi, Li Yanbin, et al.Analysis of transient electric field for epoxy spacer under lightning impulse voltage[J]. IEEE Transactions on Magnetics, 2006, 42(4): 595-598. [23] 高有华, 王尔智, 曹云东. 500kV GIS盆式绝缘子的暂态电场分析[J]. 电工技术学报, 2001, 16(6): 41-45. Gao Youhua, Wang Erzhi, Cao Yundong.Transient electric field analysis of 500 kV disc-type spacer[J]. Transactions of China Electrotechnical Society, 2001, 16(6): 41-45. [24] Preis K, Biro O, Supancic P, et al.Time-domain analysis of quasistatic electric fields in media with frequency-dependent permittivity[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1302-1305. [25] Egiziano L, Tucci V, Petrarca C, et al.A Galerkin model to study the field distribution in electrical components employing nonlinear stress grading materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(6): 765-773. [26] Mur G.Edge elements, their advantages and disadvantages[J]. IEEE Transactions on Magnetics, 1994, 30(5): 3552-3557. [27] 谢裕清, 李琳. 计算多介质电场节点场强的有限元-边界元法[J]. 华北电力大学学报, 2016, 43(2): 21-26. Xie Yuqing, Li Lin.Finite element method-boundary element method for calculation of nodal electric field intensity in multi-medium electric field[J]. Journal of North China Electric Power University, 2016, 43(2): 21-26. [28] 崔翔. 应用边界电场约束方程计算第一类边界上的场强分布[J]. 中国电机工程学报, 1987, 7(1): 53-60. Cui Xiang.Calculating the field strength distribution on the first type of boundary by using constrained electric field equation on the boundary[J]. Proceedings of the CSEE, 1987, 7(1): 53-60. [29] Wen Teng, Cui Xiang, Li Xuebao, et al.A time-domain finite element method for the transient electric field and transient charge density on the dielectric interface[J]. CSEE Journal of Power and Energy Systems, 2020, 8(1): 143-154. [30] Marti J R, Lin J.Suppression of numerical oscillations in the EMTP[J]. IEEE Power Engineering Review, 1989, 9(5): 71-72. [31] Jin Jianming.The finite element method in electromagnetics[M]. 2nd ed. New York: Wiley, 2002. [32] 翟宾. PEEK材料介电特性及其影响因素研究[D]. 北京: 华北电力大学, 2020. [33] IEC 62631:2015 Dielectric and resistive properties of solid insulating materials[S]. Geneva: International Electrotechnical Commission Std, 2015. [34] Endicott H S.Guard-gap correction for guarded-electrode measurements and exact equations for the two-fluid method of measuring permittivity and loss[J]. Journal of Testing and Evaluation, 1976, 4(3): 188-195.