The traditional automatic bus transfer equipment (referred to as “automatic switching device”) to check the “no voltage on the bus, no current on the incoming line” as the starting criterion, resulting in new energy power station to disconnect new energy as a prerequisite for automatic switching device action, reducing the new energy utilization rate and reliability of power supply. Therefore, it is of great significance to realize the reliable action of automatic switching device without disconnecting new energy. To solve the above problems, we utilize the energy storage equipped in the photovoltaic power station and adopt the control of the virtual synchronous generator (VSG). Based on considering the different matching degrees of the source-load power and the action timing relationship of each module, a fast standby automatic switching scheme considering the energy storage collaborative control is proposed.
Firstly, the mechanism of voltage and frequency change at the point of common coupling under different source-load power matching degrees after the working power supply is disconnected is analyzed, revealing that the key to suppressing the automatic switching device impulse current is the rapid realization of power balance control. Secondly, it is designed and proposed that using energy storage VSG control to suppress voltage/frequency fluctuations during islanding detection. After the islanding detection is completed, the refined power balance is further achieved by the coordinated cooperation of adjusting the energy storage VSG power command and inputting crowbar resistor or shedding load, thus the fast and reliable action of automatic switching device is realized within 100 milliseconds. Finally, based on the typical topology of photovoltaic power stations, we use MATLAB/Simulink to construct the corresponding electromagnetic transient simulation model, and a large number of simulation experiments are carried out to verify the feasibility and effectiveness of the proposed scheme.
Simulation results of the proposed standby automatic switching scheme show that it can rapidly achieve refined power balance between the power source and the load during the power balance stage under the working conditions where the power source is greater than the load, the power source is less than the load, and the power source and the load are approximately balanced. Thereby, it enables the rapid and reliable switch-on of the standby power source. When further taking into account the fluctuations of the standby power source within the range permitted by the power grid in actual working conditions, this scheme can also keep the inrush current coefficient within the requirements of the power grid during the switch-on of the standby power source.
The following conclusions can be drawn from the theoretical analysis and the simulation verification: (1) To realize the fast automatic standby power switching of new energy stations under the premise of not disconnecting new energy, it is mainly necessary to solve the fast and effective control of source-load unbalanced power and the suppression of closing impulse current. (2) On the basis of considering the different matching degrees of source-load power and the timing relationship of each module, a power balance scheme is proposed that takes into account the energy storage VSG control, the crowbar resistor and load shedding. In the islanding detection stage, the energy storage VSG can compensate for the unbalanced power to a certain extent and suppress the fluctuation of system voltage and frequency. After the islanding detection is completed, the collaborative control of adjusting the energy storage VSG power command and inputting the crowbar resistor/shedding load are to realize the active power balance of solar-storage-load. It ensures the fast and reliable action of automatic switching device.
郑涛, 马英, 由嶷, 胡胜宽. 计及储能协同控制的光伏场站快速备自投方案[J]. 电工技术学报, 0, (): 250442-.
Zheng Tao, Ma Ying, You Yi, Hu Shengkuan. A Fast Standby Automatic Switching Scheme for Photovoltaic Power Station Considering Energy Storage Cooperative Control. Transactions of China Electrotechnical Society, 0, (): 250442-.
[1] 娄为, 沈冰, 裘愉涛, 等. 钻石型配电网的保护与自愈策略分析[J]. 电力系统保护与控制, 2022, 50(23): 161-168.
Lou Wei, Shen Bing, Qiu Yutao, et al.Protection and self-healing strategy analysis of a diamond type distribution network[J]. Power System Protection and Control, 2022, 50(23): 161-168.
[2] 赵冬梅, 宋晨铭, 冯向阳, 等. 100%新能源场景下考虑频率稳定约束的源网荷储一体化系统储能优化配置[J/OL]. 电工技术学报, 2024: 1-16. (2024-06-06). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DGJS20240604002&dbname=CJFD&dbcode=CJFQ.
Zhao Dongmei, Song Chenming, Feng Xiangyang, et al. Optimal allocation of energy storage for integrated system of source, grid, load and storage considering frequency stability constraints in 100% new energy scenario.[J/OL]. Transactions of China Electrotechnical Society, 2024: 1-16. (2024-06-06). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DGJS20240604002&dbname=CJFD&dbcode=CJFQ.
[3] 杨铭, 曹武, 赵剑锋, 等. 受控电压/电流源型变流器混合多机暂态电压支撑策略[J]. 电工技术学报, 2023, 38(19): 5207-5223, 5240.
Yang Ming, Cao Wu, Zhao Jianfeng, et al.Transient voltage support strategy for hybrid multi-converter of controlled voltage/current source converter[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5207-5223, 5240.
[4] Yang Ziqian, Zhan Meng, Liu Dan, et al.Small-signal synchronous stability of a new-generation power system with 100% renewable energy[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4269-4280.
[5] 国家能源局. 备用电源自动投入装置技术条件: DL/T 526—2013[S]. 北京: 中国电力出版社, 2014.
[6] Kochukov O, Mutule A.Network-oriented approach to distributed generation planning[J]. Latvian Journal of Physics and Technical Sciences, 2017, 54(3): 3-12.
[7] Sareen K, Bhalja B R, Maheshwari R P.A hybrid multi-feature based islanding detection technique for grid connected distributed generation[J]. International Journal of Emerging Electric Power Systems, 2017, 18(1): 26-28.
[8] 陈志峰, 沈娜, 王玕, 等. 高渗透率水电接入的变电站备自投逻辑优化研究[J]. 电力系统保护与控制, 2023, 51(4): 157-164.
Chen Zhifeng, Shen Na, Wang Gan, et al.Logic optimization of a transformer substation busbar automatic transfer switch with high penetration of hydropower[J]. Power System Protection and Control, 2023, 51(4): 157-164.
[9] 姜惠兰, 薛静玮, 李天鹏, 等. 含风电场电网的备用电源快速投切方式及其整定方法[J]. 高电压技术, 2016, 42(9): 2768-2774.
Jiang Huilan, Xue Jingwei, Li Tianpeng, et al.Fast transfer mode and its tuning method for emergency power supply of grid connected with wind turbine[J]. High Voltage Engineering, 2016, 42(9): 2768-2774.
[10] 臧新霞. 提高邹城电网备自投装置动作可靠性的应用策略研究[D]. 济南: 山东大学, 2020.
Zang Xinxia.Research on application strategy to improve the operation reliability of standby automatic switching device in Zoucheng power grid[D]. Jinan: Shandong University, 2020.
[11] 王淑超, 孙光辉, 俞诚生, 等. 光伏发电系统级快速功率调控技术及其应用[J]. 中国电机工程学报, 2018, 38(21): 6254-6263, 6487.
Wang Shuchao, Sun Guanghui, Yu Chengsheng, et al.Photovoltaic power generation system level rapid power control technology and its application[J]. Proceedings of the CSEE, 2018, 38(21): 6254-6263, 6487.
[12] Raiker G A, Loganathan U, Subba Reddy B.Current control of boost converter for PV interface with momentum-based perturb and observe MPPT[J]. IEEE Transactions on Industry Applications, 2021, 57(4): 4071-4079.
[13] 郑涛, 王洪炳, 于晓军, 等. 适应于新能源接入的新型备自投方案[J]. 电网技术, 2022, 46(11): 4296-4304.
Zheng Tao, Wang Hongbing, Yu Xiaojun, et al.New busbar automatics transfer switch scheme for new energy access[J]. Power System Technology, 2022, 46(11): 4296-4304.
[14] 蔡乾, 于晓军, 吴建云, 等. 一种适用于大型光伏电站的新型备自投方案[J]. 电力工程技术, 2023, 42(6): 91-99.
Cai Qian, Yu Xiaojun, Wu Jianyun, et al.A new backup automatic switch scheme for large-scale photovoltaic power stations[J]. Electric Power Engineering Technology, 2023, 42(6): 91-99.
[15] Jiang Taosha, Cairoli P, Rodrigues R, et al.Inrush current limiting for solid state devices using NTC resistor[C]//SoutheastCon 2017, Concord, NC, USA, 2017: 1-7.
[16] 郭潇镁, 李永刚, 周一辰, 等. 基于变权重自适应MPC的VSG调频控制策略[J/OL]. 电工技术学报, 1-14[2025-04-07]. https://doi.org/10.19595/j.cnki.1000-6753.tces.241772.
Guo Xiaomei, Li Yonggang, Zhou Yichen, et al. VSG frequency regulation control strategy based on variable-weight adaptive MPC[J/OL]. Transactions of China Electrotechnical Society, 1-14[2025-04-07]. https://doi.org/10.19595/j.cnki.1000-6753.tces.241772.
[17] Chen Shimiao, Sun Yao, Han Hua, et al.A modified VSG control scheme with virtual resistance to enhance both small-signal stability and transient synchronization stability[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 6005-6014.
[18] Lü Zhengqiang, Xu Jia, Pang Yuanqi, et al.Control strategy and research on energy storage unit participation in power system frequency regulation based on VSG technology[J]. Journal of Physics: Conference Series, 2024, 2703(1): 012002.
[19] 梁鑫钰, 张哲, 尹项根, 等. 适应稳定控制系统动作的备自投开放判据[J]. 电力系统自动化, 2017, 41(8): 105-109, 132.
Liang Xinyu, Zhang Zhe, Yin Xianggen, et al.Opening criterion for automatic switchover adapted to actions of security and stability control system[J]. Automation of Electric Power Systems, 2017, 41(8): 105-109, 132.
[20] 杨富磊. 分布式并网发电系统的孤岛检测方法研究[D]. 吉林: 东北电力大学, 2016.
Yang Fulei.Research on islanding detection method of distributed grid-connected power generation system[D]. Jilin: Northeast Dianli University, 2016.
[21] 李升, 卫志农, 孙国强, 等. 大型光伏电站接入多机系统暂态电压稳定性研究[J]. 太阳能学报, 2018, 39(12): 3356-3362.
Li Sheng, Wei Zhinong, Sun Guoqiang, et al.Stability research oftransient voltage for multi-machine power systems integrated large-scale PV power plant[J]. Acta Energiae Solaris Sinica, 2018, 39(12): 3356-3362.
[22] 罗宇航,肖凡,郑宇婷,等.基于稳定域的PQ控制并网逆变器稳定性分析方法[J/OL]. 电工技术学报, 1-14[2025-04-07]. https://doi.org/10.19595/j.cnki.1000-6753.tces.241966.
Luo Yuhang, Xiao Fan, Zheng Yuting, et al. Stability Analysis Method for Grid-Connected Inverters with PQ Control Based on Stability Region[J/OL]. Transactions of China Electrotechnical Society, 1-14[2025-04-07]. https://doi.org/10.19595/j.cnki.1000-6753.tces.241966.
[23] 丁浩. 基于虚拟同步发电机的微网逆变器控制策略研究[D]. 徐州: 中国矿业大学, 2023.
Ding Hao.Research on control strategy of microgrid inverter based on virtual synchronous generator[D]. Xuzhou: China University of Mining and Technology, 2023.
[24] 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3595.
Xu Jieyi, Liu Wei, Liu Shu, et al.Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46(9): 3586-3595.
[25] 魏译帆, 邢建春. 基于虚拟同步发电机双模式切换的柴储微电网无差调频控制策略[J]. 电气技术, 2022, 23(11): 13-20.
Wei Yifan, Xing Jianchun.Zero-error frequency modulation strategy for diesel storage microgrid based on virtual synchronous generator dual-mode switching[J]. Electrical Engineering, 2022, 23(11): 13-20.
[26] 顾一丰, 邱稳斌, 李艳君, 等. 基于虚拟阻抗和锁相环的孤岛检测技术[J]. 电力系统保护与控制, 2018, 46(21): 78-85.
Gu Yifeng, Qiu Wenbin, Li Yanjun, et al.An islanding detection based on virtual impedance and phase-locked loop[J]. Power System Protection and Control, 2018, 46(21): 78-85.
[27] 汪楠楠, 卢宇, 唐浩, 等. 应用于新能源孤岛经柔直送出系统的交流耗能优化投切策略[J]. 电力建设, 2024, 45(12): 187-194.
Wang Nannan, Lu Yu, Tang Hao, et al.Improved switching strategies of AC energy consumption devices for VSC-HVDC system with renewable energy integration in island mode[J]. Electric Power Construction, 2024, 45(12): 187-194.
[28] 山东省人民政府.山东省人民政府关于印发2024年“促进经济巩固向好、加快绿色低碳高质量发展”政策清单(第一批)的通知[R/OL].[2024-1-5].
[29] 魏文荣, 苗世洪, 王廷涛, 等. 计及储能电站荷电状态恢复和调整的电力系统调频指令最优分配方法[J]. 中国电机工程学报, 2024, 44(增刊1): 53-65.
Wei Wenrong, Miao Shihong, Wang Tingtao, et al.Optimal allocation method of frequency modulation instruction in power system considering recovery and adjustment of charge state of energy storage power station[J]. Proceedings of the CSEE, 2024, 44(S1): 53-65.
[30] 李建林, 李雅欣, 刘海涛, 等. 计及储能电站安全性的功率分配策略研究[J]. 电工技术学报, 2022, 37(23): 5976-5986.
Li Jianlin, Li Yaxin, Liu Haitao, et al.Research on power distribution strategy considering the safety of energy storage power station[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5976-5986.
[31] 梅念, 周杨, 李探, 等. 张北柔性直流电网盈余功率问题的耗能方法[J]. 电网技术, 2020, 44(5): 1991-1999.
Mei Nian, Zhou Yang, Li Tan, et al.Energy consumption method for power surplus in Zhangbei VSC-based DC grid[J]. Power System Technology, 2020, 44(5): 1991-1999.
[32] 池志坤, 袁至, 李骥. 基于系统频率与SOC状态预测的储能一次调频控制策略[J/OL]. 高电压技术, 2025: 1-15. (2025-01-23). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GDYJ20250121009&dbname=CJFD&dbcode=CJFQ.
Chi Zhikun, Yuan Zhi, Li Ji. Primary frequency modulation control strategy of energy storage based on system frequency and SOC state prediction[J/OL]. High Voltage Engineering, 2025: 1-15. (2025-01-23). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GDYJ20250121009&dbname=CJFD&dbcode=CJFQ.
[33] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 光伏并网系统接入配电网技术规定: GB/T 29319-2024[S]. 北京: 中国标准出版社, 2024.
[34] 贾科, 刘芸, 毕天姝, 等. 基于自适应虚拟阻抗的构网型新能源电源不对称故障穿越控制[J/OL]. 中国电机工程学报, 1-11[2025-04-07]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240307.1048.002.html.
Jia Ke, Liu Yun, Bi Tianshu, et al. Asymmetric fault ride through of grid-forming control of renewable energy based on adaptive virtual impedance[J/OL]. Proceedings of the CSEE, 1-11[2025-04-07]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240307.1048.002.html.
[35] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量供电电压偏差: GB/T 12325—2008[S]. 北京: 中国标准出版社, 2009.
[36] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量电力系统频率偏差: GB/T 15945—2008[S]. 北京: 中国标准出版社, 2008.