电工技术学报  2025, Vol. 40 Issue (9): 2982-2995    DOI: 10.19595/j.cnki.1000-6753.tces.240706
电能存储与应用 |
基于CNN-LSTM-AM模型的储能锂离子电池荷电状态预测
杜伟1, 王圣2, 李健1, 韩哲哲3, 许传龙1
1.东南大学能源与环境学院 南京 210096;
2.国家能源集团科学技术研究院有限公司 南京 210023;
3.南京工程学院信息与通信工程学院 南京 211167
Prediction of State of Charge for Energy Storage Lithium-Ion Batteries Based on CNN-LSTM-AM Model
Du Wei1, Wang Sheng2, Li Jian1, Han Zhezhe3, Xu Chuanlong1
1. School of Energy and Environment Southeast University Nanjing 210096 China;
2. China Energy Science and Technology Research Institute Co. Ltd Nanjing 210023 China;
3. School of Information and Communication Engineering Nanjing Institute of Technology Nanjing 211167 China