Robust Self-Synchronization Control Strategy for Doubly-Fed Induction Generator Based on Transient Electromotive Force Control
Huang Da1,2, Ke Deping1,2, Yang Huanhuan3, Xu Guanghu3, Xu Jian1,2
1. Hubei Engineering and Technology Research Center for AC/DC Intelligent Distribution Network School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 3. China Southern Power Grid Power Dispatching and Control Center Guangzhou 510000 China
Abstract:The grid-side converter (GSC) of the doubly-fed induction generator (DFIG) is directly connected to the grid. Theoretically, virtual synchronous generator (VSG) control can be applied to GSC. However, it is difficult to control the total active output of DFIG through GSC directly, and establishing the “active power-phase angle” relationship between the total active output of DFIG and GSC potential is challenging. The current academic community's implementation of self-synchronization control (VSG control) on the rotor-side converter (RSC) of DFIG ignores the influence of fan dynamics on self-synchronization control. This paper proposes a robust self-synchronization control strategy for DFIG based on transient electromotive force control. It can provide synchronization support to the power grid while ensuring the stability of the closed-loop control system. Furthermore, a robust PI parameter design method for self-synchronization control is proposed. Firstly, by analogy with traditional synchronous generators, a self-synchronization control strategy diagram considering the dynamic characteristics of the DFIG excitation system is proposed to control the RSC output voltage. The proposed self-synchronization control strategy needs to use the transient reactance parameters of DFIG to obtain measured values of transient reactance. Accordingly, An open-loop model of the system is established, and a robust PI parameter design method for self-synchronization control is proposed for the open-loop system, which can effectively solve the stability problem of the closed-loop control system in the presence of uncertainty in the DFIG parameters. Simulation results show that after disconnecting the infinite power switch in a single machine infinite power supply system with load, the system can still operate stably even after losing the infinite power supply. The virtual angular velocity of the self-synchronization control DFIG ultimately stabilizes at 0.997(pu), and the steady-state output active power increment is about 0.014 7(pu) Therefore, the droop coefficient of the self-synchronization control can be estimated to be 0.014 7/0.003=4.9. The average output active power change within 50 ms after cutting off the power supply is about 0.014 0(pu), and the average frequency change rate is about 0.004 5(pu)/s. The inertia time coefficient of self-synchronization control is estimated at about 0.014 0/0.004 5/2=1.56. The estimated results are consistent with the self-synchronization control parameters D and H set in the simulation. Then, small and large disturbance tests are conducted on a single-machine infinite bus DFIG system with self-synchronization control using different PI parameters. Under the small disturbance test, as the uncertainty of DFIG transient reactance increases, the maximum characteristic root of the real part of the closed-loop system begins to move towards the right half plane of the complex plane, and the system’s stability gradually deteriorates. However, the stability degradation rate of closed-loop systems using ordinary PI parameters is faster. When the uncertainty is about 20%, the system is already unstable with small disturbances, while the closed-loop system using robust PI parameters is still stable. In the large disturbance test, when the short-circuit duration is 0.1 s, the closed-loop system using two sets of PI parameters can maintain stability. When the duration of the short circuit increases to 0.114 s, the closed-loop system using robust PI parameters can still maintain transient stability, while the closed-loop system using ordinary PI parameters has become unstable. In addition, the variations are similar in the disturbance tests of the three-machine and nine-node system. The following conclusions can be drawn. (1) Implementing transient electromotive force inner loop tracking control on the RSC of DFIG can provide controllable voltage source characteristics to the stator side of DFIG. Therefore, just like controlling the voltage source converter, the phase angle of transient electromotive force can be controlled through the active power outer loop, while the amplitude of transient electromotive force can be controlled through the reactive power outer loop. Therefore, self-synchronization control of DFIG is achieved. (2) The proposed robust parameter design method can enhance the immune ability of the closed-loop system to parameter uncertainty and improve system stability.
黄达, 柯德平, 杨欢欢, 徐光虎, 徐箭. 基于暂态电动势控制的双馈风机鲁棒自同步控制策略[J]. 电工技术学报, 2025, 40(4): 1046-1062.
Huang Da, Ke Deping, Yang Huanhuan, Xu Guanghu, Xu Jian. Robust Self-Synchronization Control Strategy for Doubly-Fed Induction Generator Based on Transient Electromotive Force Control. Transactions of China Electrotechnical Society, 2025, 40(4): 1046-1062.
[1] 郭小龙, 杨桂兴, 张彦军, 等. 构网型储能变流器并网系统SISO环路增益建模与重塑控制[J]. 电气技术, 2023, 24(2): 24-31, 51. Guo Xiaolong, Yang Guixing, Zhang Yanjun, et al.Modeling and reshaping control of single input and single output loop gain of the grid-forming energy storage converter grid-connected system[J]. Electrical Engineering, 2023, 24(2): 24-31, 51. [2] 李红, 梁军杨, 王振民, 等. 跟网型变换器的小扰动同步稳定机理分析与致稳控制[J]. 电工技术学报, 2024, 39(12): 3802-3815. Li Hong, Liang Junyang, Wang Zhenmin, et al.Small signal synchronization stability analysis and improved control strategy for grid following converter[J]. Transactions of China Electrotechnical Society, 2024 3 39(12): 3802-3815. [3] 郝艺, 周瑀涵, 刘晨曦, 等. 含跟网型储能的新能源多馈入系统小扰动电压支撑强度分析[J]. 电工技术学报, 2024, 39(11): 3569-3580. Hao Yi, Zhou Yuhan, Liu Chenxi, et al.Smalldisturbance voltage support strength analysis for renewable multi-infeed system with grid-following energy storage[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3569-3580. [4] Harnefors L, Bongiorno M, Lundberg S.Inputadmittance calculation and shaping for controlled voltage-source converters[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3323-3334. [5] Dong Dong, Wen Bo, Boroyevich D, et al.Analysis of phase-locked loop low-frequency stability in threephase grid-connected power converters considering impedance interactions[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 310-321. [6] Cao Wenchao, Ma Yiwei, Yang Liu, et al.D-Q impedance based stability analysis and parameter design of three-phase inverter-based AC power systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 6017-6028. [7] 董文凯, 杜文娟, 王海风. 弱连接条件下锁相环动态主导的并网直驱风电场小干扰稳定性研究[J]. 电工技术学报, 2021, 36(3): 609-622. Dong Wenkai, Du Wenjuan, Wang Haifeng.Smallsignal stability of a grid-connected PMSG wind farm dominated by dynamics of PLLs under weak grid connection[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 609-622. [8] 谢震, 杨曙昕, 代鹏程, 等. 构网型全功率风电机组网侧变流器耦合分析及抑制策略[J]. 电工技术学报, 2023, 38(14): 3745-3758, 3768. Xie Zhen, Yang Shuxin, Dai Pengcheng, et al.Gridside coupling analysis and suppression strategy of grid-forming full-power wind turbines[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3745-3758, 3768. [9] Matevosyan J, Badrzadeh B, Prevost T, et al.Gridforming inverters: are they the key for high renewable penetration?[J]. IEEE Power and Energy Magazine, 2019, 17(6): 89-98. [10] Matevosyan J, MacDowell J, Miller N, et al. A future with inverter-based resources: finding strength from traditional weakness[J]. IEEE Power and Energy Magazine, 2021, 19(6): 18-28. [11] 刘欣, 郭志博, 贾焦心, 等. 基于序阻抗的虚拟同步发电机并网稳定性分析及虚拟阻抗设计[J]. 电工技术学报, 2023, 38(15): 4130-4146. Liu Xin, Guo Zhibo, Jia Jiaoxin, et al.Stability analysis and virtual impedance design of virtual synchronous machine based on sequence impedance[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4130-4146. [12] 潘子迅, 杨晓峰, 赵锐, 等. 不平衡电网下虚拟同步机的多模式协调策略[J]. 电工技术学报, 2023, 38(16): 4274-4285. Pan Zixun, Yang Xiaofeng, Zhao Rui, et al.Multimode coordination control of virtual synchronous generator under unbalanced power grid[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4274-4285. [13] 李东东, 朱钱唯, 程云志, 等. 基于自适应惯量阻尼综合控制算法的虚拟同步发电机控制策略[J]. 电力自动化设备, 2017, 37(11): 72-77. Li Dongdong, Zhu Qianwei, Cheng Yunzhi, et al.Control strategy of virtual synchronous generator based on self-adaptive rotor inertia and damping combination control algorithm[J]. Electric Power Automation Equipment, 2017, 37(11): 72-77. [14] 张辉, 王帆, 李晓强, 等. 虚拟同步发电机并联运行的阻抗匹配策略[J]. 电力系统自动化, 2018, 42(9): 69-74. Zhang Hui, Wang Fan, Li Xiaoqiang, et al.Impedance matching strategy for parallel virtual synchronous generators[J]. Automation of Electric Power Systems, 2018, 42(9): 69-74. [15] 涂春鸣, 谢伟杰, 肖凡, 等. 多虚拟同步发电机并联系统控制参数对稳定性的影响分析[J]. 电力系统自动化, 2020, 44(15): 77-86. Tu Chunming, Xie Weijie, Xiao Fan, et al.Influence analysis of control parameters of parallel system with multiple virtual synchronous generators on stability[J]. Automation of Electric Power Systems, 2020, 44(15): 77-86. [16] 胡文强, 吴在军, 孙充勃, 等. 基于VSG的储能系统并网逆变器建模与参数整定方法[J]. 电力自动化设备, 2018, 38(8): 13-23. Hu Wenqiang, Wu Zaijun, Sun Chongbo, et al.Modeling and parameter setting method for gridconnected inverter of energy storage system based on VSG[J]. Electric Power Automation Equipment, 2018, 38(8): 13-23. [17] 刘华志, 张祥宇, 李永刚, 等. 虚拟同步双馈风电机组的非线性联轴功率振荡抑制方法[J]. 中国电机工程学报, 2023, 43(4): 1449-1462. Liu Huazhi, Zhang Xiangyu, Li Yonggang, et al.Nonlinear coupling power oscillation suppression method for virtual synchronous doubly-fed wind turbine[J]. Proceedings of the CSEE, 2023, 43(4): 1449-1462. [18] 刘华志, 张祥宇, 李永刚, 等. 双馈风电场的虚拟多联轴耦合与功率振荡抑制技术[J]. 中国电机工程学报, 2023, 43(8): 3000-3013. Liu Huazhi, Zhang Xiangyu, Li Yonggang, et al.Virtual multi shaft coupling and power oscillation suppression technology for doubly-fed wind farm[J]. Proceedings of the CSEE, 2023, 43(8): 3000-3013. [19] 王德胜, 颜湘武, 贾焦心, 等. 永磁直驱风机基于虚拟同步技术的高、低电压连续故障穿越策略[J]. 中国电机工程学报, 2022, 42(6): 2164-2174. Wang Desheng, Yan Xiangwu, Jia Jiaoxin, et al.High/low voltage continuous fault ride through strategy of PMSGs based on virtual synchronization technology[J]. Proceedings of the CSEE, 2022, 42(6): 2164-2174. [20] 王东泽, 孙海顺, 黄碧月, 等. 基于虚拟同步控制的电压源型直驱风电机组并网稳定性分析[J]. 高电压技术, 2022, 48(8): 3282-3294. Wang Dongze, Sun Haishun, Huang Biyue, et al.Analysis of grid-connected stability of voltagesource-type PMSG-based wind turbine based on virtual synchronous control[J]. High Voltage Engineering, 2022, 48(8): 3282-3294. [21] 孙东阳, 孟繁易, 王南, 等. 基于反步自适应准谐振控制的双馈风机次同步振荡抑制策略[J]. 电工技术学报, 2023, 38(9): 2375-2390, 2434. Sun Dongyang, Meng Fanyi, Wang Nan, et al.DFIG sub-synchronous oscillation suppression strategy based on backstepping adaptive quasi-resonant control[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2375-2390, 2434. [22] Verma P, Seethalekshmi K, Dwivedi B.A selfregulating virtual synchronous generator control of doubly fed induction generator-wind farms[J]. IEEE Canadian Journal of Electrical and Computer Engineering, 2023, 46(1): 35-43. [23] Sun Peng, Xu Hao, Yao Jun, et al.Dynamic interaction analysis and damping control strategy of hybrid system with grid-forming and grid-following control modes[J]. IEEE Transactions on Energy Conversion, 2023, 38(3): 1639-1649. [24] 高澈, 田新首, 李琰, 等. 基于运行状态评估的双馈风机自适应虚拟同步发电机控制[J]. 电网技术, 2018, 42(2): 517-523. Gao Che, Tian Xinshou, Li Yan, et al.Adaptive virtual synchronous generator control of DFIG based on operation state evaluation[J]. Power System Technology, 2018, 42(2): 517-523. [25] 迟永宁, 雷雨, 季笑庆, 等. 虚拟同步双馈风机对同步机作用路径及低频振荡影响分析[J]. 现代电力, 2021, 38(3): 237-247. Chi Yongning, Lei Yu, Ji Xiaoqing, et al.Analysis of impact of DFIG-based wind turbines with virtual synchronous control on the action path and low frequency oscillation of synchronous generator[J]. Modern Electric Power, 2021, 38(3): 237-247. [26] 康积涛, 陈博, 杨丰波. 双馈风机转子侧逆变器虚拟同步化控制策略研究[J]. 电工技术, 2020(4): 21-24, 27. Kang Jitao, Chen Bo, Yang Fengbo.Research on virtual synchronization control strategy of rotor-side inverter of DFIG[J]. Electric Engineering, 2020(4): 21-24, 27. [27] 张祥宇, 沈文奇, 黄弘扬, 等. 基于功率耦合的双馈风机并网系统同步控制技术[J]. 电力自动化设备, 2022, 42(12): 43-49. Zhang Xiangyu, Shen Wenqi, Huang Hongyang, et al.Synchronization control technology of grid-connected DFIG system based on power coupling[J]. Electric Power Automation Equipment, 2022, 42(12): 43-49. [28] 沈雅琦, 马静, 李鹏冲, 等. 含附加能量支路的虚拟同步双馈风机次同步振荡抑制策略[J]. 电力系统自动化, 2022, 46(23): 83-93. Shen Yaqi, Ma Jing, Li Pengchong, et al.Subsynchronous oscillation suppression strategy for virtual synchronous DFIG-based wind turbines with additional energy branch[J]. Automation of Electric Power Systems, 2022, 46(23): 83-93. [29] 张英敏, 吴谨轶, 江琴, 等. 基于风储联合系统的受端电网黑启动技术及协调恢复策略[J]. 工程科学与技术, 2023, 55(2): 70-83. Zhang Yingmin, Wu Jinyi, Jiang Qin, et al.Receiving-end power grid black start technology and coordinated restoration strategy based on windstorage combined system[J]. Advanced Engineering Sciences, 2023, 55(2): 70-83. [30] 魏林君, 叶华, 迟永宁. 基于状态重构的构网型风机与储能系统联合频率支撑控制策略[J]. 高电压技术, 2023, 49(12): 5095-5104. Wei Linjun, Ye Hua, Chi Yongning.Frequency response coordinated control strategy between gridforming wind turbine and energy storage based on state reconstruction[J]. High Voltage Engineering, 2023, 49(12): 5095-5104. [31] 安垚. 时滞随机分布系统的跟踪控制及鲁棒性研究[D]. 扬州: 扬州大学, 2013. An Yao.Research on tracking control and robustness of stochastic distributed systems with time delay[D]. Yangzhou: Yangzhou University, 2013.