Hierarchical Control of High-Speed Pantograph Considering Pneumatic System
Yang Peng1, Zhang Jing2, Jin Wei1, Liu Zhigang1
1. School of Electrical Engineering Southwest Jiaotong University Chengdu 611756 China;
2. School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 China
In view of the problem that the dynamic characteristics of the pneumatic system affect the active control accuracy of pantograph, a hierarchical control strategy taking into account the response time delay was proposed. The upper controller adopted hybrid ${{H}_{2}}/{{H}_{\infty }}$ robust control strategy. According to the set three performance indexes of the pantograph operation state, a multi-objective state feedback control law was constructed. The active control force was obtained by solving linear matrix inequality. For the lower controller, based on internal model control (IMC) theory, the first-order equivalent simplified model of the pneumatic system was established by genetic algorithm, and an internal model -proportional integral derivative (PID) controller related to a single parameter was designed. The tracking rate of the output control value of the upper controller was accelerated. The simulation calculation under different train speeds verified the effectiveness and robustness of the hierarchical controller. The simulation results show that the lower controller can effectively reduce the response time and significantly improve the response delay of the pneumatic system. Compared with the traditional single control, the reduction rate of the standard deviation of the contact force of the hierarchical control is increased by about 10%, which effectively suppresses the pantograph-catenary coupled vibration and improves the current collection quality of the high-speed pantograph-catenary.
杨鹏, 张静, 金伟, 刘志刚. 考虑气动系统的高速受电弓分层控制[J]. 电工技术学报, 2022, 37(10): 2644-2655.
Yang Peng, Zhang Jing, Jin Wei, Liu Zhigang. Hierarchical Control of High-Speed Pantograph Considering Pneumatic System. Transactions of China Electrotechnical Society, 2022, 37(10): 2644-2655.
[1] 张静, 刘志刚, 鲁小兵, 等. 高速弓网空气动力学研究进展[J]. 铁道学报, 2015, 37(1): 7-15.
Zhang Jing, Liu Zhigang, Lu Xiaobing, et al.Study on aerodynamics development of high-speed pantograph and catenary[J]. Journal of the China Railway Society, 2015, 37(1): 7-15.
[2] 陈忠华, 唐俊, 时光, 等. 弓网强电流滑动电接触摩擦振动分析与建模[J]. 电工技术学报, 2020, 35(18): 3869-3877.
Chen Zhonghua, Tang Jun, Shi Guang, et al.Analysis and modeling of high current sliding electrical contact friction dynamics in pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3869-3877.
[3] Lee J H, Kim Y G, Paik J S, et al.Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train[J]. Journal of Mechanical Science and Technology, 2012, 26(10): 3253-3260.
[4] 刘方林. 电气化铁路动态弓网接触电阻研究[J]. 电气技术, 2018, 19(9): 69-72.
Liu Fanglin.Study on dynamic contact resistance between pantograph and catenary in electrified rail- way[J]. Electrical Engineering, 2018, 19(9): 69-72.
[5] 陈忠华, 吴迪, 回立川, 等. 波动载荷下弓网滑动电接触失效研究[J]. 电工技术学报, 2019, 34(21): 4492-4500.
Chen Zhonghua, Wu Di, Hui Lichuan, et al.Research on failure of pantograph-catenary sliding electrical contact under fluctuation load[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4492-4500.
[6] Wang Hongrui, Liu Zhigang, Song Yang, et al.Dete- ction of contact wire irregularities using a quadratic time-frequency representation of the pantograph- catenary contact force[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1385-1397.
[7] Kim J W, Yu S N.Design variable optimization for pantograph system of high-speed train using robust design technique[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(2): 267-273.
[8] 周宁. 350km/h及以上弓网动态行为研究[D]. 成都: 西南交通大学, 2013.
[9] 吴孟臻, 刘洋, 许向红. 高速弓网系统动力学参数敏度分析及优化[J]. 力学学报, 2021, 53(1): 75-83.
Wu Mengzhen, Liu Yang, Xu Xianghong.Sensitivity analysis and optimization on parameters of high speed pantograph-catenary system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 75-83.
[10] 蒋先国, 古晓东, 邓洪, 等. 基于微动理论的整体吊弦损伤机理及优化研究[J]. 铁道学报, 2019, 41(6): 40-45.
Jiang Xianguo, Gu Xiaodong, Deng Hong, et al.Research on damage mechanism and optimization of integral dropper string based on fretting theory[J]. Journal of the China Railway Society, 2019, 41(6): 40-45.
[11] Zhang Weihua, Zhou Ning, Li Ruiping, et al.Panto- graph and catenary system with double pantographs for high-speed trains at 350 km/h or higher[J]. Journal of Modern Transportation, 2011, 19(1): 7-11.
[12] 时光, 刘健辰, 陈忠华, 等. 基于DE-EDA多目标优化的受电弓模糊控制[J]. 计算机工程与应用, 2016, 52(1): 229-232, 253.
Shi Guang, Liu Jianchen, Chen Zhonghua, et al.Control of pantograph based on DE-EDA multi- objective optimization[J]. Computer Engineering and Applications, 2016, 52(1): 229-232, 253.
[13] Cristina S R, Jimenez J O, Carnicero A.Active control strategy on a catenary-pantograph validated model[J]. Vehicle System Dynamics, 2013, 51(4): 554-569.
[14] Yoshitaka Y, Mitsuru I.Advanced active control of contact force between pantograph and catenary for high-speed trains[J]. Quarterly Report of RTRI, 2012, 53(1): 28-33.
[15] Zhu Bing, Ren Zhiling, Xie Wenjing, et al.Active nonlinear partial-state feedback control of contacting force for a pantograph-catenary system[J]. ISA Transa- ctions, 2019, 91(1): 78-89.
[16] 时光, 陈忠华, 郭凤仪, 等. 基于最优载荷的受电弓自适应终端滑模控制[J]. 电工技术学报, 2017, 32(4): 140-146, 153.
Shi Guang, Chen Zhonghua, Guo Fengyi, et al.Adaptive terminal sliding mode control of pantograph based on optimal load[J]. Transactions of China Elec- trotechnical Society, 2017, 32(4): 140-146, 153.
[17] 时光, 陈忠华, 郭凤仪, 等. 弓网接触力反馈线性化控制[J]. 控制理论与应用, 2016, 33(1): 85-91.
Shi Guang, Chen Zhonghua, Guo Fengyi, et al.Feedback linearization control of load between panto- graph and catenary[J]. Control Theory and Appli- cations, 2016, 33(1): 85-91.
[18] Pisano A, Usai E.Contact force estimation and regulation in active pantographs: an algebraic obser- vability approach[J]. Asian Journal of Control, 2011, 13(6): 761-772.
[19] 张静, 宋宝林, 谢松霖, 等. 基于状态估计的高速受电弓鲁棒预测控制[J]. 电工技术学报, 2021, 36(5): 1075-1083.
Zhang Jing, Song Baolin, Xie Songlin.Robust predictive control of high-speed pantograph based on state estimation[J]. Transactions of China Electro- technical Society, 2021, 36(5): 1075-1083.
[20] Lin Yuchen, Shieh N C, Liu V T.Optimal control for rail vehicle pantograph systems with actuator delays[J]. IET Control Theory and Applications, 2015, 9(13): 1917-1926.
[21] Lu Xiaobing, Liu Zhigang, Song Yang, et al.Estimator- based multi-objective robust control strategy for an active pantograph in high-speed railways[J]. Pro- ceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 2018, 232(4): 1064-1077.
[22] Song Yang, Liu Zhigang, Wang Hongrui, et al.Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements[J]. Vehicle System Dynamics, 2015, 53(10): 1455-1479.
[23] 任辉文. 气压驱动系统特性对受电弓动力学的影响[D]. 长沙: 湖南大学, 2019.
[24] 黄文龙, 胡海涛, 陈俊宇, 等. 枢纽型牵引变电所再生制动能量利用系统能量管理及控制策略[J]. 电工技术学报, 2021, 36(3): 588-598.
Huang Wenlong, Hu Haitao, Chen Junyu, et al.Energy management and control strategy of regener- ative braking energy utilization system in hub traction substation[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 588-598.
[25] 郭伟, 赵洪山. 基于事件触发机制的直流微电网多混合储能系统分层协调控制方法[J]. 电工技术学报, 2020, 35(5): 1140-1151.
Guo Wei, Zhao Hongshan.Coordinated control method of multiple hybrid energy storage system in DC microgrid based on event-triggered mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1140-1151.
[26] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
[27] 杨京, 王彤, 毕经天, 等. 含直驱风电机组的电力系统次同步振荡鲁棒阻尼控制[J]. 电力系统自动化, 2020, 44(3): 56-65.
Yang Jing, Wang Tong, Bi Jingtian, et al.Robust damping control of subsynchronous oscillation in power system with direct-drive wind turbines[J]. Automation of Electric Power Systems, 2020, 44(3): 56-65.
[28] 邹洲. 基于遗传算法的主动悬架多目标${{H}_{2}}/{{H}_{\infty }}$鲁棒控制[D]. 武汉: 武汉理工大学, 2010.
[29] 周天豪, 杨智, 祝长生, 等. 电磁轴承高速电机转子系统的内模-PID控制[J]. 电工技术学报, 2020, 35(16): 3414-3425.
Zhou Tianhao, Yang Zhi, Zhu Changsheng, et al.Internal model control-PID control of an active magnetic bearing high-speed motor rotor system[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3414-3425.
[30] Jin Qibing, Liu Qi.IMC-PID design based on model matching approach and closed-loop shaping[J]. ISA Transaction, 2014, 53(2): 462-473.
[31] 苗海涛. 基于空气弹簧高速受电弓的气压伺服主动控制研究[D]. 成都: 西南交通大学, 2009.
[32] 寇发荣, 李冬, 许家楠, 等. 车辆电动静液压主动悬架内模PID控制研究[J]. 液压与气动, 2018(6): 1-7.
Kou Farong, Li Dong, Xu Jianan, et al.Study on internal model PID control of vehicle active suspen- sion with electro-hydrostatic actuator[J]. Chinese Hydraulics and Pneumatics, 2018(6): 1-7.