Acceleration Responses Robustness of Active Magnetic Bearings-Rigid Rotor System
Gong Lei1, Yang Zhi2, Zhu Changsheng1
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China;
2. No. 704 Research Institute China Shipbuilding Industry Corporation Shanghai 200031 China
The acceleration response is a significant dynamic characteristic of active magnetic bearings (AMBs)-rigid rotor system. Currently, the research mainly focuses on the steady state characteristics of AMBs-rigid rotor system, and there are few studies on the acceleration characteristics. In this paper, taking AMBs-rigid rotor system as the object, the acceleration characteristics caused by different imbalance mass under PID controller and ${{H}_{\infty }}$ robust controller were studied. Firstly, the dynamic equation of AMBs-rigid rotor system in the process of accelerating motion was established. Then, the design principle of PID controller and ${{H}_{\infty }}$ robust controller and the stability of closed loop system were analyzed. Meanwhile, the influence of PID control parameters on the acceleration characteristics of AMBs-rigid rotor system was studied. Because of strong robustness of ${{H}_{\infty }}$ robust controller, the acceleration characteristics are not sensitive to the system parameters. Finally, simulation and experimental results verified the acceleration characteristics of AMBs-rigid rotor system under PID control and ${{H}_{\infty }}$ robust control. It is shown that the change of PID control parameters affects the acceleration characteristics of the rotor system, while the acceleration characteristics of the AMBs-rigid rotor system by ${{H}_{\infty }}$ robust control are almost not affected by the acceleration, which is quite different from the acceleration characteristics of PID control and traditional rotor system.
巩磊, 杨智, 祝长生. 主动电磁轴承-刚性转子系统加速响应的鲁棒性[J]. 电工技术学报, 2021, 36(2): 268-281.
Gong Lei, Yang Zhi, Zhu Changsheng. Acceleration Responses Robustness of Active Magnetic Bearings-Rigid Rotor System. Transactions of China Electrotechnical Society, 2021, 36(2): 268-281.
[1] Schweitzer G, Maslen E.Magnetic bearing: theory, design, and application to rotating machinery[M]. New York: Springer, 2009.
[2] 李万杰, 张国民, 王新文. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报, 2020, 35(1): 10-18.
Zhang Wanjie, Zhang Guomin, Wang Xinwen.Inte- gration design of high-temperature superconducting bearing and electromagnetic thrust bearing for fly- wheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 10-18.
[3] Nikita U, Alexander S, Cheol H, et al.Design aspects of high-speed electrical machines with active magnetic bearings for compressor applications[J]. IEEE Transa- ctions on Industrial Electronics, 2017, 64(11): 8427-8436.
[4] 顾家柳. 转子动力学[M]. 北京: 国防工业出版社, 1985.
[5] 王美令, 温保岗, 韩清凯. 弹支-刚性转子系统过共振瞬态响应特性研究[J]. 动力学与控制学报, 2018, 16(6): 533-538.
Wang Meiling, Wen Baogang, Han Qingkai.Transient response characteristic of a rigid rotor system with flexible supports across resonance[J]. Journal of Dynamics and Control, 2018, 16(6): 533-538.
[6] 白保东, 王禹, 陈志雪. 基于电磁屏蔽法变频电机轴承电流抑制研究[J]. 电工技术学报, 2016, 31(7): 33-39.
Bai Baodong, Wang Yu, Chen Zhixue.Inhibition of bearing currents in frequency variable motor based on electromagnetic shielding[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 33-39.
[7] Boris R, Lutz S, Henner D.Problems of vibration near critical speeds in rigid rotors with autobalancing devices[C]//19th Biennial Conference on Mechanical Vibration and Noise, Chicago, USA, 2003: 1-7.
[8] Sena J, Doyoung J, Yong Bin.Rigid mode vibration controland dynamic behavior of hybrid foil-magnetic bearing turbo blower[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2017, 139(5): 1-12.
[9] Wang Shimin, Zhang Xingye.Experimental researches on reducing the critical acceleration that induces sustainable rotor rubbing[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 2011, 133(6): 0610071-0610079.
[10] Wang Shuming, Lu Qishao, Twizell E H.Reducing lateral vibration of a rotor passing through critical speeds by phase modulating[J]. Journal of Engin- eering for Gas Turbines and Power-Transactions of the ASME, 2003, 125(3): 766-771.
[11] Shafai B, Beale S, Larocca P, et al.Magnetic bearing control systems and adaptive forced balancing[J]. IEEE Control Systems Magazine, 1994, 14(2): 4-13.
[12] Herzog R, Buhler P, Gahler C, et al.Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5): 580-586.
[13] Jiang Kejian, Zhu Changsheng, Chen Liangliang.Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system[J]. IEEE Transactions on Industrial Electro- nics, 2015, 62(9): 5655-5664.
[14] 于洁, 祝长生, 于忠磊. 考虑涡流的自传感主动电磁轴承转子位置估计策略[J]. 电工技术学报, 2018, 33(9): 1946-1956.
Yu Jie, Zhu Changsheng, Yu Zhonglei.Rotor position estimation strategy for self-sensing active magnetic bearing considering eddy currents[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1946-1956.
[15] 王忠博, 毛川, 祝长生. 主动电磁轴承-刚性转子系统PID控制器设计方法[J]. 中国电机工程学报, 2018, 38(20): 6154-6163.
Wang Zhongbo, Mao Chuan, Zhu Changsheng.A design method of PID controller for active magnetic bearings-rigid rotor systems[J]. Proceedings of the CSEE, 2018, 38(20): 6154-6163.
[16] 周天豪, 杨智, 祝长生. 电磁轴承高速电机转子系统的内模-PID控制[J]. 电工技术学报, 2020, 35(16): 3414-3425.
Zhou Tianhao, Yang Zhi, Zhu Changsheng.Internal model control-PID control of an active magnetic bearing high-speed motor rotor system[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(16): 3414-3425.
[17] Sheh Z, Khan T, Lazoglu I.Design and adaptive sliding-mode control of hybrid magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2537-2547.
[18] Noshadi A, Shi Juan, Lee W S, et al.System identi- fication and robust control of multi-input multi-output active magnetic bearing systems[J]. IEEE Transa- ctions on Control Systems Technology, 2016, 24(4): 1227-1239.
[19] Mao Chuan, Zhu Changsheng.Unbalance com- pensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm[J]. IEEE Transactions on Industrial Elec- tronics, 2018, 65(5): 4177-4186.
[20] 房建成, 张会娟, 刘虎. 磁悬浮刚性转子系统振动机理分析与动力学建模[J]. 控制理论与应用, 2014, 31(12): 1707-1713.
Fang Jiancheng, Zhang Huijuan, Liu Hu.Vibration mechanism analysis and dynamic model development of magnetically suspended rigid rotor system[J]. Control Theory and Applications, 2014, 31(12): 1707-1713.