Abstract:Recently, the concept of cyber physical system (CPS) has been widely applied in micro-grid. But it has also caused a lot of communication problems. Therefore, an event-triggered hierarchical control strategy is proposed in this paper. It’s used to improve the control effect on the obtained voltages and frequency by droop control of distributed energy resources (DERs) when considering with packet loss and communication disturbance. The structure of the control strategy is divided into the cyber layer and the physical layer. In the cyber layer: A novel virtual leader-following consensus control (VLFCC) and a predictive compensation method combined with extreme learning mechanism (ELM) and model predictive control (MPC) is designed to solve the problem of packet loss; A method combined with sliding mode control (SMC) and the VLFCC (SVLFCC) is designed to solve the problem of communication disturbance. And the implementations of the above methods are based on event-trigger mechanisms. In the physical layer: Based on the proposed event-trigger mechanisms, a secondary control method on DERs is designed in this layer. Finally, the effectiveness of the proposedhierarchical control strategy is verified by simulation experiments.
杨秋霞, 袁冬梅, 郭小强, 张博, 支成. CPS概念下基于事件触发且考虑通信丢包及扰动的微网分层控制策略[J]. 电工技术学报, 2019, 34(15): 3209-3221.
Yang Qiuxia, YuanDongmei, GuoXiaoqiang, Zhang Bo, Zhi Cheng. An Event-Triggered Hierarchical Control Strategy Based on Concept of CPS for Micro-Grid Considering with Packet Loss and Communication Disturbance. Transactions of China Electrotechnical Society, 2019, 34(15): 3209-3221.
[1] 孙孝峰, 王娟, 田艳军, 等.基于自调节下垂系数的DG逆变器控制[J].中国电机工程学报, 2013, 33(36): 71-78. Sun Xiaofeng, Wang Juan, TianYanjun, et al. Control of DG connected inverters based on self-adaptable adjustment of droop coefficient[J].Proceedings of the CSEE, 2013, 33(36): 71-78. [2] 米阳, 吴彦伟, 符杨,等. 独立光储直流微电网分层协调控制[J]. 电力系统保护与控制, 2017, 45(8): 37-45. Mi Yang, Wu Yanwei, Fu Yang, et al.Hierarchical coordinated control of island DC microgrid with photovoltaic and storage system[J]. Power System Protection and Control, 2017, 45(8): 37-45. [3] 陈鹏飞, 邓玮璍. 基于Zigbee通信网络的低压微电网分布式功率控制[J]. 电力系统保护与控制, 2018, 46(7): 115-122. Chen Pengfei, Deng Weiye.Distributed power control for low voltage microgrid based on zigbee communication network[J]. Power System Protection and Control, 2018, 46(7): 115-122. [4] 吴青峰, 孙孝峰, 王雅楠,等. 基于分布式下垂控制的微电网分布式储能系统SOC平衡策略[J]. 电工技术学报, 2018, 33(6):1247-1256. Wu Qingfeng, Sun Xiaofeng, Wang Ya′nan, et al.A distributed control strategy for SOC balancing of distributed energy storage systems in microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1247-1256. [5] 范其丽, 郑晓茜, 王璞, 等.基于混合储能动态调节的独立混合微电网分布式协调控制[J]. 电力系统保护与控制, 2018, 46(7):105-114. Fan Qili, ZhengXiaoxi, Wang Pu, et al.Decentralized control for autonomous hybrid microgrid with hybrid storagesystem dynamical regulating[J]. Power System Protection and Control, 2018,46(7): 105-114. [6] 吕振宇, 苏晨, 吴在军,等. 孤岛型微电网分布式二次调节策略及通信拓扑优化[J]. 电工技术学报, 2017, 32(6):209-219. LüZhenyu, Su Chen, Wu Zaijun, et al. Distributed secondary control strategy and its communication topology optimization for islanded microgrid[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 209-219. [7] 支娜, 张辉, 肖曦. 提高直流微电网动态特性的改进下垂控制策略研究[J]. 电工技术学报, 2016, 31(3):31-39. Zhi Na, Zhang Hui, Xiao Xi.Research on the improved droop control strategy for improving the dynamic characteristics of DCmicrogrid[J]. Transactions of China Electrotechnical Society, 2016,31(3): 31-39. [8] 周烨, 汪可友, 李国杰, 等.基于多智能体一致性算法的微电网分布式分层控制策略[J]. 电力系统自动化, 2014,41(11):142-149. Zhou Ye, Wang Keyou, LiGuojie, et al. Distributed hierarchical control for microgrid based on multi-agent consensus algorithm[J]. Automation of Electric Power Systems, 2014, 41(11):142-149. [9] Wai RJ, Lin CY, Huang YC, et al.Design of high-performance stand-alone and grid-connected inverter for distributed generation applications[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1542-1555. [10] Asad R, Kazemi A.A novel decentralized voltage control method for direct current microgrids with sensitive loads[J]. International Transactions on Electrical Energy Systems, 2015, 25(2):197-215. [11] 冯伟, 孙凯, 关雅娟,等. 基于分层控制的微电网并网谐波电流主动抑制控制策略[J]. 电工技术学报, 2018, 33(6):1400-1409. Feng Wei, Sun Kai, Guan Yajuan, et al.An active harmonic grid-connecting current suppression strategy for hierarchical control based microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1400-1409. [12] Vandoorn TL, Vasquez JC, Kooning JD, et al.Microgrids: hierarchical control and an overview of the control and reserve management strategies[J]. IEEEIndustrial Electronics Magazine, 2013, 7(4):42-55. [13] Han Yi, Young PM, Jain A, et al.Robust control for microgrid frequency deviation reduction with attached storage system[J]. IEEE Transactions on Smart Grid, 2015, 6(2):557-565. [14] Lu Xiaoqing, Yu Xinghuo, Lai Jingang, et al.A novel distributed secondary coordination control approach for islanded microgrids[J]. IEEE Transactions on Smart Grid, 2017, DOI: 10.1109/TSG.2016.2618120. [15] 吴丽珍, 雷艾虎, 郝晓弘.孤岛微电网电压无功分布式分层协同控制[J].太阳能学报, 2014, 38(4):1045-1054. Wu Lizhen, Lei Aihu, HaoXiaohong. Distributed hierarchical coordinated control forvoltage and reactive power in islanded microgrid[J].ActaEnergiae Solaris Sinica, 2014, 38(38):1045-1054. [16] Dou Chunxia, LüMengfei, Zhao Tianyu, et al. Decentralised coordinated control of microgrid based on multi-agent system[J]. IET-Generation Transmission& Distribution, 2015, 9(16): 2474-2484. [17] Bidram A, Davoudi A, Lewis F L, et al.Distributed cooperative secondary control of microgrids using feedback linearization[J]. IEEE Transactions on Power Systems, 2013, 28(3):3462-3470. [18] Bidram A, Davoudi A, Lewis F L, et al.Secondary control of microgrids based on distributed cooperative control of multi-agent systems[J]. IET-Generation, Transmission & Distribution, 2013, 7(8): 822-831. [19] 陈萌, 肖湘宁. 基于分布式内模设计的微电网协调二次控制策略[J]. 电工技术学报, 2017, 32(10):145-153. Chen Meng, Xiao Xiangning.Cooperative secondary control strategy of microgrids based on distributed internal model design[J].Transactions of China Electrotechnical Society, 2017, 32(10): 145-153. [20] Wang Panbao, Lu Xiaonan, Yang Xu, etal. An improved distributed secondary control method for DC microgrids with enhanced dynamic current sharing performance[J]. IEEE Transactions on Power Electronics, 2016, 31(9):6658-6673. [21] ShafieeQ, Nasirian V, VasquezJ C, et al. A multi-functional fully distributed control framework for ac microgrids[J]. IEEE Transactions on Smart Grid, 2017, DOI:10.1109 /TSG.2016.2628785. [22] RezaeiMM, SoltaniJ.Robust control of an islanded multi-bus microgrid based on input-output feedback linearisation and sliding mode control[J]. IET-Generation Transmission & Distribution, 2015, 9(15): 2447-2454. [23] You Xiu, Hua Changchun, Peng Dan, et al.Leader-following consensus for multi-agent systems subject to actuator saturation with switching topologies and time-varying delays[J]. IET-Control Theory & Applications, 2016, 10(2):144-150. [24] 陈智勇, 罗安, 陈燕东,等. 逆变器并联的自适应滑模全局鲁棒电压控制方法[J]. 中国电机工程学报, 2015, 35(13): 3272-3282. Chen Zhiyong, LuoAn, Chen Yandong, et al. Adaptive siding-mode global robustness voltage control for islanded paralleled inverters[J]. Proceedings of the CSEE, 2015, 35(13): 3272-3282.