Abstract:The permanent magnet linear synchronous motor (PMLSM) is susceptible to uncertainty factors, such as system parameter variation, external disturbance and friction. Thus, an intelligent second-order sliding mode control (I2OSMC) method combining second-order sliding mode control (2OSMC) and recurrent radial basis function neural network (RRBFNN) is used to improve system control performance. The design of 2OSMC weakens the chattering problem in the traditional sliding mode control and improves the position tracking accuracy of the system. However, because it is difficult to estimate the boundary of the uncertainty factors in the system, the optimal performance of 2OSMC cannot be achieved. Therefore, the RRBFNN is introduced to improve the robustness of the system, which has faster learning ability and can train the network parameters online. The experimental results show that the proposed control method is feasible and can effectively suppress the influence of uncertainty factors on the control system, so that the system has higher position tracking accuracy and stronger robust performance.
王天鹤, 赵希梅, 金鸿雁. 基于递归径向基神经网络的永磁直线同步电机智能二阶滑模控制[J]. 电工技术学报, 2021, 36(6): 1229-1237.
Wang Tianhe, Zhao Ximei, Jin Hongyan. Intelligent Second-Order Sliding Mode Control Based on Recurrent Radial Basis Function Neural Network for Permanent Magnet Linear Synchronous Motor. Transactions of China Electrotechnical Society, 2021, 36(6): 1229-1237.
[1] Kazraji S M, Soflayi R B, Sharifian M B B. Sliding-mode observer for speed and position sensor- less control of linear-PMSM[J]. Electrical Control & Communication Engineering, 2014, 5(1): 20-26. [2] 智淑亚, 吴洪兵. 数控进给伺服系统摩擦补偿控制仿真[J]. 沈阳工业大学学报, 2019, 41(4): 361-365. Zhi Shuya, Wu Hongbing.Simulation of friction compensation control of NC feed servo system[J]. Journal of Shenyang University of Technology, 2019, 41(4): 361-365. [3] Chen S Y, Liu T S.Intelligent tracking control of a PMLSM using self-evolving probabilistic fuzzy neural network[J]. IET Electric Power Applications, 2017, 11(6): 1043-1054. [4] 朱国昕, 雷鸣凯, 赵希梅. 永磁同步电机伺服系统自适应迭代学习控制[J]. 沈阳工业大学学报, 2018, 40(1): 6-11. Zhu Guoxin, Lei Mingkai, Zhao Ximei.Adaptive iterative learning control for permanent magnet synchronous motor servo system[J]. Journal of Shenyang University of Technology, 2018, 40(1): 6-11. [5] 孟高军, 袁野, 孙玉坤, 等. 带定位力补偿的扩张观测器磁通切换永磁直线电机无位置传感器控制策略[J]. 电工技术学报, 2018, 33(17): 4091-4101. Meng Gaojun, Yuan Ye, Sun Yukun, et al.Extended state observer with cogging force compensation for sensorless control strategy of linear flux-switching permanent magnet machine[J]. Transaction of China Electrotechnical Society, 2018, 33(17): 4091-4101. [6] Namazi M M, Rashidi A, Saghaian-Nejad S M, et al. Chattering-free robust adaptive sliding-mode control for switched reluctance motor drive[C]//IEEE Trans- portation Electrification Conference and Expo, Michigan, USA, 2016: 474-478. [7] 刘金琨, 孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2016, 24(3): 407-418. Liu Jinkun, Sun Fuchun.Research and development on theory and algorithms of sliding mode control[J]. Control Theory and Applications, 2016, 24(3): 407-418. [8] 侯勇, 赵姗姗, 王勇. 永磁同步电机的积分型滑模变结构控制[J]. 天津科技大学学报, 2013, 28(2): 55-58. Hou Yong, Zhao Shanshan, Wang Yong.Integral sliding mode variable structure control of permanent magnet synchronous motor[J]. Journal of Tianjing University of Science and Technology, 2013, 28(2): 55-58. [9] 陆华才, 提娟, 刘怡君, 等. 基于模糊滑模观测器的PMLSM无传感器控制[J]. 信息与控制, 2016, 45(1): 60-65. Lu Huacai, Ti Juan, Liu Yijun, et al.Sensorless control of PMLSM based on fuzzy sliding mode observer[J]. Information and Control, 2016, 45(1): 60-65. [10] Zhao Lihang, Huang Jin, Liu He, et al.Second-order sliding-mode observer with online parameter identi- fication for sensorless induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5280-5289. [11] Panah P G, Ataei M, Mirzaeian B, et al.A robust adaptive sliding mode control for PMLSM with variable velocity profile over wide range[J]. Research Journal of Applied Sciences Engineering & Tech- nology, 2015, 10(9): 997-1006. [12] 赵希梅, 金鸿雁. 基于Elman神经网络的永磁直线同步电机互补滑模控制[J]. 电工技术学报, 2018, 33(5): 973-979. Zhao Ximei, Jin Hongyan.Complementary sliding mode control for permanent magnet linear synchronous motor based on Elman neural network[J]. Transaction of China Electrotechnical Society, 2018, 33(5): 973-979. [13] 朱玲, 李艳东, 孙明, 等. 移动机器人编队的神经网络滑模控制[J]. 电机与控制学报, 2014, 18(3): 113-118. Zhu Ling, Li Yandong, Sun Ming, et al.Sliding mode control of mobile robot formations based on neural networks[J]. Electric Machines and Control, 2014, 18(3): 113-118. [14] Qi Liang, Shi Hongbo.Adaptive position tracking control of permanent magnet synchronous motor based on RBF fast terminal sliding mode control[J]. Neurocomputing, 2013, 115: 23-30. [15] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 211-220. Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Pattern recognition of partial discharges in DC XLPE cables based on convolutional neural network[J]. Transaction of China Electrotechnical Society, 2020, 35(3): 211-220. [16] Xia Meizhen, Zhang Tianping.Adaptive neural network control for stochastic constrained block structure nonlinear systems with dynamical uncertainties[J]. International Journal of Adaptive Control and Signal Processing, 2019, 33(11): 1079-1096. [17] An Ru, Li Wenjing, Han Honggui, et al.An improved Levenberg-Marquardt algorithm with adaptive learning rate for RBF neural network[C]//35th Chinese Con- trol Conference, Chengdu, 2016: 3630-3635.