Abstract:Due to high-voltage excitation, high-frequency mechanical vibration, and friction drive principle, high-power linear ultrasonic motors (HPLUMs) demonstrate complicated thermal-mechanical-electrical coupling dynamics under continuous operating conditions. Traditional field-based simulation methods and lumped parameter-based analytical methods are difficult to balance calculation accuracy and analysis efficiency when addressing the multi-physics coupled issues of ultrasonic motors. Existing multi-physics models for ultrasonic motors focus on stator performance rather than the comprehensive performance of motors under the multi-field coupling effect. Therefore, this paper proposes a field-circuit combination analysis methodology to analyze the piezo-thermal-structure multi-physics coupling of ultrasonic motors, considering the inherent electrical- vibration-thermal coupled effect. Furthermore, the electrical characteristics, temperature rise characteristics, actuating performance, and mechanical strength of critical components in HPLUMs under multi-field coupling effects can be evaluated. Firstly, the piezo-structure coupled finite element model (FEM) and thermal-structure coupled FEM for a V-shape HPLUM are constructed from the field viewpoint. Secondly, the stator's electrical-vibration-thermal coupled loss model and a 2D thermal network model (TNM) are constructed from the circuit viewpoint. Thirdly, considering temperature-caused resonant frequency drifting behavior and real roughness at the contact interface, an analytical actuating performance model (APM) of the HPLUM is constructed. Finally, the results from modal and harmonic response analysis based on the piezo-structure coupled FEM are used as inputs into thermal- structure coupled FEM, circuit-based loss model and 2D TNM, and APM. The temperature rise for different stator components based on TNM is coupled to the thermal-structure coupled FEM, circuit-based loss model, and APM, forming a field-circuit combination calculation loop. Simulation results show complex nonlinear relationships between electrical characteristics (input voltage and current) and temperature rise characteristics. The rise in temperature for different stator parts shows considerable differences, and the peak temperature occurs at piezoelectric ceramics (PZT). The driving tip and the joint of the clamping end encounter maximum thermal stress, and the nominal thermal stress exceeds 60 MPa at the interface between PZT and metal caps. Actuating performance remarkably decreases with the rise in temperature due to resonant frequency drift. Comparison between the simulation and the experimental results verifies the multi-field model. The following conclusions can be drawn from the simulation and experimental analysis: (1) Compared with traditional multi-physics analysis methods, the proposed field-circuit combination method effectively reduces computational costs and evaluates the comprehensive performance of HPLUMs under multi-field coupling effects. Therefore, applying the proposed method for the multi-physics optimization design of HPLUMs is appropriate. (2) The calculation loop clarifies the electrical-vibration-thermal two-way coupled dynamics in ultrasonic motors, providing valuable insights for design optimization and performance evaluation.
李响, 郭鹏涛, 丁远. 基于场路结合的大功率直线超声波电机压电-热-结构多物理场分析[J]. 电工技术学报, 2024, 39(2): 423-433.
Li Xiang, Guo Pengtao, Ding Yuan. Piezo-Thermal-Structure Coupling Analysis for High-Power Linear Ultrasonic Motor Based on Field-Circuit Combination Method. Transactions of China Electrotechnical Society, 2024, 39(2): 423-433.
[1] Zhao Chunsheng.Ultrasonic motors: technologies and applications[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. [2] 蒋春容, 赵子龙, 陆旦宏, 等. 环形行波超声波电机动态接触摩擦特性建模与分析[J]. 电工技术学报, 2023, 38(8): 2036-2047. Jiang Chunrong, Zhao Zilong, Lu Danhong, et al.Modeling and analysis on dynamic contact and friction characteristics of ring type traveling wave ultrasonic motors[J]. Transactions of China Electro-technical Society, 2023, 38(8): 2036-2047. [3] Liu Yingxiang, Chen Weishan, Liu Junkao, et al.A high-power linear ultrasonic motor using bending vibration transducer[J]. IEEE Transactions on Indu-strial Electronics, 2013, 60(11): 5160-5166. [4] Lu Xiaolong, Hu Junhui, Zhao Chunsheng.Analyses of the temperature field of traveling-wave rotary ultrasonic motors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(12): 2708-2719. [5] 王光庆, 岳玉秋, 展永政. 纵-弯复合旋转式超声波电动机的优化设计与性能分析[J]. 电工技术学报, 2015, 30(22): 33-41. Wang Guangqing, Yue Yuqiu, Zhan Yongzheng.Optimum design and performances analysis of the longitudinal-bending hybrid rotating type ultrasonic motor[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 33-41. [6] 白洋, 王剑, 郭吉丰. 基于复损耗的杆式超声波电机定子建模及其仿真[J]. 电工技术学报, 2012, 27(12): 185-190. Bai Yang, Wang Jian, Guo Jifeng.Odeling and simulation of a bar-type ultrasonic motor based on loss coefficients[J]. Transactions of China Electro-technical Society, 2012, 27(12): 185-190. [7] Zhou Lifeng, Yao Zhiyuan, Li Xiaoniu, et al.Modeling and verification of thermal-mechanical-electric coupling dynamics of a V-shape linear ultrasonic motor[J]. Sensors and Actuators A: Physical, 2019, 298: 111580. [8] 王鑫, 王亮, 于鹏鹏, 等. 贴片式纵弯复合型直线超声电机的理论建模与实验研究[J]. 中国电机工程学报, 2021, 41(14): 5014-5024. Wang Xin, Wang Liang, Yu Pengpeng, et al.Theoretical modeling and experiment studies of a bonded type longitudinal-bending hybrid linear ultrasonic motor[J]. Proceedings of the CSEE, 2021, 41(14): 5014-5024. [9] Akiki P, Hassan M H, Bensetti M, et al.Multiphysics design of a V-shape IPM motor[J]. IEEE Transactions on Energy Conversion, 2018, 33(3): 1141-1153. [10] 鲁炳林, 徐衍亮. 步进电机新型场路结合分析方法: 齿层计算转矩法[J]. 电机与控制学报, 2018, 22(5): 11-18. Lu Binglin, Xu Yanliang.Field-circuit coupled method of stepping motors-tooth-layer calculated torque method[J]. Electric Machines and Control, 2018, 22(5): 11-18. [11] 唐钊, 刘轩东, 陈铭. 考虑流体动力学的干式变压器热网络模型仿真分析[J]. 电工技术学报, 2022, 37(18): 4777-4787. Tang Zhao, Liu Xuandong, Chen Ming.Simulation analysis of dry-type transformer thermal network model considering fluid dynamics[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4777-4787. [12] 师蔚, 骆凯传, 张舟云. 基于热网络法的永磁电机温度在线估计[J]. 电工技术学报, 2023, 38(10): 2686-2697. Shi Wei, Luo Kaichuan, Zhang Zhouyun.On-line temperature estimation of permanent magnet motor based on lumped parameter thermal network method[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2686-2697. [13] 赵能桐, 杨鑫, 陈钰凯, 等. 考虑超磁致伸缩材料非均匀性的大功率电声换能器阻抗特性[J]. 电工技术学报, 2021, 36(10): 1999-2006. Zhao Nengtong, Yang Xin, Chen Yukai, et al.The impedance characteristics of high power electro-acoustic transducer considering the inhomogeneity of giant magnetostrictive material[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 1999-2006. [14] Li Xiang, Kan Chaohao, Ren Taian, et al.Deve-lopment of thermal network for a high power linear ultrasonic motor with V-shape stator[C]//2021 13th International Symposium on Linear Drives for Indu-stry Applications (LDIA), Wuhan, China, 2021: 1-6. [15] Li Xiang, Kan Chaohao, Ren Taian, et al.Thermal network modeling and thermal stress evaluation for a high-power linear ultrasonic motor[J]. IEEE Transa-ctions on Industry Applications, 2022, 58(6): 7181-7191. [16] 董晓霄, 黄肖肖, 夏博, 等. 超声波电机夹心式定子结构含损耗机电等效电路建模与分析[J]. 电工技术学报, 2022, 37(22): 5756-5764. Dong Xiaoxiao, Huang Xiaoxiao, Xia Bo, et al.Electromechanical equivalent model of sandwich stator of ultrasonic motors considering losses[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5756-5764. [17] Li Shiyang, Yang Ming.Analysis of the temperature field distribution for piezoelectric plate-type ultrasonic motor[J]. Sensors and Actuators A: Physical, 2010, 164(1/2): 107-115. [18] Cook R D.Finite element modeling for stress analysis[M]. New York: Wiley, 1995. [19] Qi Xue, Shi Weijia, Wang Shaokai, et al.Com-pensating nonlinear temperature dependence of ultrasonic motor[J]. Ultrasonics, 2021, 117: 106522. [20] Shi Yunlai, Zhao Chunsheng, Zhang Jianhui.Contact analysis and modeling of standing wave linear ultrasonic motor[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(6): 1235-1242. [21] Shi Xi, Polycarpou A A.Measurement and modeling of normal contact stiffness and contact damping at the meso scale[J]. Journal of Vibration and Acoustics, 2005, 127(1): 52-60. [22] Shi Weijia, Zhao Hui, Ma Jie, et al.An optimum-frequency tracking scheme for ultrasonic motor[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4413-4422.