Abstract:The Langevin sandwich structure is widely used in the stator design of ultrasonic motors, in which the piezoelectric vibrator works in the thickness vibration mode. Because the existing equivalent circuit model does not fully consider the inherent loss characteristics of the piezoelectric vibrator, it is unable to evaluate the mechanical quality factor. In this paper, the decoupling electromechanical equivalent circuit model of a piezoelectric vibrator with three types of losses is firstly established to study the influence of three types of inherent losses of piezoelectric ceramics on the mechanical quality factor. Then, the electromechanical equivalent circuit model of the Langevin sandwich structure is established, and the influence of material and structural parameters on resonance frequency, anti-resonance frequency and electromechanical coupling coefficient is discussed. Finally, a Langevin structural prototype is fabricated, and its impedance-frequency characteristics and vibration characteristics are tested. The accuracy of the theoretical model is verified. This paper provides theoretical support for designing a vibrator structure with a high mechanical quality factor and further develops a high-performance ultrasonic motor by revealing the differential influence of the inherent loss of piezoelectric vibrators on its output characteristics.
[1] Liu Yingxiang, Yan Jipeng, Wang Liang, et al.A two- DOF ultrasonic motor using a longitudinal-bending hybrid sandwich transducer[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3041-3050. [2] Jiang Xinggang, Zhu Xianbin, Wong C Y, et al.Theory of series inductance matching to transducer at premechanical resonance zone in ultrasonic vibration cutting[J]. IEEE Transactions on Industrial Elec- tronics, 2019, 66(4): 3019-3029. [3] Li Xuan, Stritch T, Manley K, et al.Limits and opportunities for miniaturizing ultrasonic surgical devices based on a Langevin transducer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(7): 2543-2553. [4] 王天圣, 吴志军, 冯平法, 等. 压电超声换能器电负载调频特性研究[J]. 机械工程学报, 2017, 53(19): 45-51. Wang Tiansheng, Wu Zhijun, Feng Pingfa, et al.Characteristics of piezoelectric ultrasonic transducer with electric load modifying frequency[J]. Journal of Mechanical Engineering, 2017, 53(19): 45-51. [5] 刘继伦, 刘素贞, 金亮, 等. 用于测厚和裂纹检测的正交横波电磁超声换能器仿真分析及实验研究[J]. 电工技术学报, 2022, 37(11): 2686-2697. Liu Jilun, Liu Suzhen, Jin Liang, et al.Simulation and experiment of orthogonal shear waves with electro- magnetic acoustic transducer for thickness measure- ment and crack detection[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2686-2697. [6] 姚睿丰, 王妍, 高景晖, 等. 压电材料与器件在电气工程领域的应用[J]. 电工技术学报, 2021, 36(7): 1324-1337. Yao Ruifeng, Wang Yan, Gao Jinghui, et al.Applications of piezoelectric materials and devices in electric engineering[J]. Transactions of China Elec- trotechnical Society, 2021, 36(7): 1324-1337. [7] 韦艳飞, 杨鑫, 陈钰凯, 等. 计及损耗的超磁致伸缩材料参数提取及有限元仿真应用[J]. 电工技术学报, 2022, 37(7): 1726-1734. Wei Yanfei, Yang Xin, Chen Yukai, et al.Parameter extraction and FEM simulation of giant mag- netostrictive transducer considering losses[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(7): 1726-1734. [8] 王光庆, 徐文潭, 杨斌强. T型直线超声波电动机的运行机理及其特性分析[J]. 电工技术学报, 2017, 32(15): 111-119. Wang Guangqing, Xu Wentan, Yang Binqiang.Operating mechanism and characteristics analysis of a T-shaped linear ultrasonic motor[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 111-119. [9] 蒋春容, 董晓霄, 张津杨, 等. 径向换能型超声波电机定子振动模型[J]. 电工技术学报, 2017, 32(9): 48-55. Jiang Chunrong, Dong Xiaoxiao, Zhang Jinyang, et al.Stator vibration model of a radial energy conversion ultrasonic motor[J]. Transactions of China Electro- technical Society, 2017, 32(9): 48-55. [10] 王鑫, 王亮, 于鹏鹏, 等. 贴片式纵弯复合型直线超声电机的理论建模与实验研究[J]. 中国电机工程学报, 2021, 41(14): 5014-5024. Wang Xin, Wang Liang, Yu Pengpeng, et al.Theoretical modeling and experiment studies of a bonded type longitudinal-bending hybrid linear ultrasonic motor[J]. Proceedings of the CSEE, 2021, 41(14): 5014-5024. [11] Deng Yunyun, Zhang Guangbin, Zhang Xiaofeng.A method to depress the transmitting voltage response fluctuation of a double excitation piezoelectric transducer[J]. Applied Acoustics, 2020, 158: 107066. [12] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器[J]. 物理学报, 2021, 70(1): 341-351. Chen Cheng, Lin Shuyu.A new broadband radial vibration ultrasonic transducer based on 2-2 pie- zoelectric composite material[J]. Acta Physica Sinica, 2021, 70(1): 341-351. [13] Li Xiaoniu, Yao Zhiyuan, Li Rong, et al.Dynamics modeling and control of a V-shaped ultrasonic motor with two Langevin-type transducers[J]. Smart Materials and Structures, 2020, 29(2): 025018. [14] Wu Jiang, Mizuno Y, Nakamura K.Vibration characteristics of polymer-based Langevin trans- ducers[J]. Smart Materials and Structures, 2018, 27(9): 095013. [15] Dal Bo L, Gardonio P, Turco E.Analysis and scaling study of vibration energy harvesting with reactive electromagnetic and piezoelectric transducers[J]. Journal of Sound and Vibration, 2020, 484: 115510. [16] Dong Xiaoxiao, Jiang Chunrong, Jin Long, et al.Inherent loss analysis of piezoelectrics in radial vibration and its application in ultrasonic motor[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(8): 1632-1640. [17] American National Standards Institute. An American National Standard: IEEE Standard on Piezoelectricity Standard[S]. IEEE, 1988.