Abstract:In recent years, with the promotion of the dual carbon policy, the application of energy storage technology in urban rail transit has become increasingly widespread, showing a trend of point-to-line development. When multiple stations are installed with energy storage devices on a line, charging/discharging strategy design for different station energy storage devices and the coordination and control for multiple energy storage systems are necessary. This paper analyzes the relationship between traction network voltage, train status, and residual power of trains under no-load voltage and departure interval conditions based on the measured traction network voltage and 10 kV transformer output voltage. A distributed interval energy management strategy is proposed, dividing the entire line into several energy management intervals. The parameters of the energy management equipment within the interval are dynamically adjusted by identifying the train status and residual power within the interval. Firstly, the no-load voltage of the traction substation is identified online based on the output voltage of the 10 kV transformer. The real-time status and residual power of the trains in the management section are identified with the identified no-load voltage and the traction network voltage of the substations in the section. Based on the real-time identified residual power, the benchmark value of the charging and discharging threshold of the energy storage system in the section and the initial slope of the threshold variation are determined. This strategy introduces an online correction mechanism to further optimize the effects of energy conservation and voltage stabilization according to parameters such as charging and discharging cycles, frequency of traction network voltage exceeding 900 V, and the state of charge of the energy storage system. It corrects the benchmark values and updates the slopes of the charging and discharging thresholds for multiple energy storage systems within the interval. The proposed strategy has been verified on two sets of MW energy storage systems at Tongzhou Beiyuan station, and Baliqiao station of Beijing Metro Batong line. The experimental results show that the proposed distributed interval energy management strategy achieves an energy-saving rate of 14.4% and a voltage stabilization rate of 35.25% on weekdays. Compared with the existing dynamic threshold energy management strategy based on the no-load voltage of this station, the energy saving rate and voltage stabilization rate have increased by 5.4% and 9.05%, respectively. It provides an efficient and feasible scheme for applying a multi-energy storage system in urban rail transit.
钟志宏, 李炎, 米佳雨, 林飞, 杨中平. 基于牵引网电压和空载电压的多储能系统区间能量管理策略[J]. 电工技术学报, 2024, 39(15): 4583-4598.
Zhong Zhihong, Li Yan, Mi Jiayu, Lin Fei, Yang Zhongping. Interval Energy Management Strategy for Multiple Energy Storage Systems Based on Traction Network Voltage and No-Load Voltage. Transactions of China Electrotechnical Society, 2024, 39(15): 4583-4598.
[1] 中国城市轨道交通协会. 城市轨道交通2022年度统计和分析报告[EB/OL].[2023-3-31]. https://www. camet.org.cn/tjxx/11944. China Association of Metros. Annual statistics and analysis report on urban rail transit in2022[EB/OL]. https://www.camet.org.cn/tjxx/ 11944. [2] 包叙定. 我国城轨交通发展的现状、问题与瞻望[J]. 城市轨道交通, 2018(10): 16-21. Bao Xuding.Present situation, problems and prospect of urban rail transit development in China[J]. China Metros, 2018(10): 16-21. [3] 中华人民共和国交通运输部. 交通运输部关于印发《绿色交通“十四五”发展规划》的通知[EB/OL].[2021-10-29]. https://xxgk.mot.gov.cn/2020/jigou/zhghs/ 202201/t20220121_3637584.html. Ministry of Transport of the People's Republic of China. Notice of the ministry of transport on the issuance of the “14th five-year development plan for green transportation”[EB/OL].[2021-10-29]. https:// xxgk.mot.gov.cn/2020/jigou/zhghs/202201/t20220121_ 3637584.html. [4] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207. Zhang Shenxi, Wang Danyang, Cheng Haozhong, et al.Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207. [5] 郑亚晶, 李耀辉, 李雨恒, 等. 再生制动条件下地铁列车运行图的节能优化[J]. 华南理工大学学报(自然科学版), 2021, 49(7): 1-7. Zheng Yajing, Li Yaohui, Li Yuheng, et al.Energy saving optimization of metro train working diagram under regenerative braking[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(7): 1-7. [6] 霍利杰, 杨轶成, 孙婷, 等. 地铁再生制动能量分散回馈多模控制研究[J]. 电气技术, 2020, 21(3): 37-43. Huo Lijie, Yang Yicheng, Sun Ting, et al.Research on multi-mode control of energy regenerative feed- back of regenerative braking in metro[J]. Electrical Engineering, 2020, 21(3): 37-43. [7] 杨中平, 林飞. 储能技术在地面式再生制动能量吸收和利用装置中的应用[J]. 都市快轨交通, 2021, 34(6): 1-8. Yang Zhongping, Lin Fei.Application of energy storage technology in stationary regenerative braking energy absorption and utilization devices[J]. Urban Rapid Rail Transit, 2021, 34(6): 1-8. [8] Okui A, Hase S, Shigeeda H, et al.Application of energy storage system for railway transportation in Japan[C]//The 2010 International Power Electronics Conference-ECCE ASIA-, Sapporo, Japan, 2010: 3117-3123. [9] 赵亚杰, 夏欢, 王俊兴, 等. 基于动态阈值调节的城轨交通超级电容储能系统控制策略研究[J]. 电工技术学报, 2015, 30(14): 427-433. Zhao Yajie, Xia Huan, Wang Junxing, et al.Control strategy of ultracapacitor storage system in urban mass transit system based on dynamic voltage threshold[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 427-433. [10] 夏欢. 城轨超级电容储能系统分层控制与容量配置优化研究[D]. 北京: 北京交通大学, 2017. Xia Huan.Hierarchical control and capacity allocation optimization of supercapacitor energy storage system for urban rail transit[D]. Beijing: Beijing Jiaotong University, 2017. [11] 信月. 基于全寿命周期的地面式超级电容储能系统能量管理策略优化研究[D]. 北京: 北京交通大学, 2020. Xin Yue.Research on energy management strategy optimization of stationary supercapacitor energy storage system based on full life cycle[D]. Beijing: Beijing Jiaotong University, 2020. [12] 李旭阳. 城轨交通超级电容储能系统在线优化控制策略研究[D]. 北京: 北京交通大学, 2017. Li Xuyang.Research on on-line optimal control strategy of urban rail transit super-capacitor energy storage system[D]. Beijing: Beijing Jiaotong University, 2017. [13] 兰笠夫. 城市轨道交通地面式超级电容储能系统节能及稳压控制研究[D]. 北京: 北京交通大学, 2022. Lan Lifu.Study on energy saving and voltage stabilizing control of ground super capacitor energy storage system in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2022. [14] 诸斐琴. 城市轨道交通地面式超级电容储能系统自适应协调控制与容量配置综合优化研究[D]. 北京: 北京交通大学, 2020. Zhu Feiqin.Adaptive cooperative control and capacity configuration optimization of supercapacitor energy storage systems in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2020. [15] 秦强强, 张骄, 李宇杰, 等. 基于列车运行状态的城轨地面混合储能装置分时段控制策略[J]. 电工技术学报, 2019, 34(增刊2): 760-769. Qin Qiangqiang, Zhang Jiao, Li Yujie, et al.Time-divided control strategy of urban rail and ground hybrid energy storage device based on train running state[J]. Transactions of China Elec- trotechnical Society, 2019, 34(S2): 760-769. [16] Ciccarelli F, Del Pizzo A, Iannuzzi D.Improvement of energy efficiency in light railway vehicles based on power management control of wayside lithium-ion capacitor storage[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 275-286. [17] Zhong Zhihong, Yang Zhongping, Fang Xiaochun, et al.Hierarchical optimization of an on-board supercapacitor energy storage system considering train electric braking characteristics and system loss[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2576-2587. [18] 刘宇嫣, 杨中平, 林飞, 等. 城轨地面式混合储能系统自适应能量管理与容量优化配置研究[J]. 电工技术学报, 2021, 36(23): 4874-4884. Liu Yuyan, Yang Zhongping, Lin Fei, et al.Study on adaptive energy management and optimal capacity configuration of urban rail ground hybrid energy storage system[J]. Transactions of China Electro- technical Society, 2021, 36(23): 4874-4884. [19] 钟志宏. 考虑车-地储能装置的城轨列车再生制动性能优化研究[D]. 北京: 北京交通大学, 2021. Zhong Zhihong.Research on optimization of regenerative braking performance of urban rail train considering vehicle-ground energy storage device[D]. Beijing: Beijing Jiaotong University, 2021. [20] 林舜江, 冯祥勇, 梁炜焜, 等. 新能源电力系统不确定优化调度方法研究现状及展望[J]. 电力系统自动化, 2024, 48(10): 20-41. Lin Shunjiang, Feng Xiangyong, Liang Weikun, et al.Research and prospect of the uncertain optimal dispatch methods for renewable energy power systems[J]. Automation of Electric Power Systems, 2024, 48(10): 20-41. [21] Bilbao E, Barrade P, Etxeberria-Otadui I, et al.Optimal energy management strategy of an improved elevator with energy storage capacity based on dynamic programming[J]. IEEE Transactions on Industry Applications, 2014, 50(2): 1233-1244. [22] 陈怀鑫, 杨中平, 林飞, 等. 基于遗传算法的城轨交通超级电容储能装置能量管理和容量配置优化研究[J]. 铁道学报, 2019, 41(9): 59-66. Chen Huaixin, Yang Zhongping, Lin Fei, et al.Management and configuration for stationary super- capacitor energy storage system applied in urban rail transit based on genetic algorithm[J]. Journal of the China Railway Society, 2019, 41(9): 59-66. [23] 李翠萍, 司文博, 李军徽, 等. 基于集合经验模态分解和多目标遗传算法的火-多储系统调频功率双层优化[J]. 电工技术学报, 2024, 39(7): 2017-2032. Li Cuiping, Si Wenbo, Li Junhui, et al.Two-layer optimization of frequency modulated power of thermal generation and multi-storage system based on ensemble empirical mode decomposition and multi- objective genetic algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2017-2032. [24] Yang Zhongping, Zhu Feiqin, Lin Fei.Deep- reinforcement-learning-based energy management strategy for supercapacitor energy storage systems in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1150-1160. [25] Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Decentralized cooperative control of multiple energy storage systems in urban railway based on multiagent deep reinforcement learning[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 9368-9379. [26] 陈泽宇, 方志远, 杨瑞鑫, 等. 基于深度强化学习的混合动力汽车能量管理策略[J]. 电工技术学报, 2022, 37(23): 6157-6168. Chen Zeyu, Fang Zhiyuan, Yang Ruixin, et al.Energy management strategy for hybrid electric vehicle based on the deep reinforcement learning method[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6157-6168. [27] 董雷, 杨子民, 乔骥, 等. 基于分层约束强化学习的综合能源多微网系统优化调度[J]. 电工技术学报, 2024, 39(5): 1436-1453. Dong Lei, Yang Zimin, Qiao Ji, et al.Optimal scheduling of integrated energy multi-microgrid system based on hierarchical constraint reinforcement learning[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1436-1453. [28] Mnih V, Kavukcuoglu K, Silver D, et al.Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. [29] 刘海涛, 熊雄, 季宇, 等. 直流配电下多微网系统集群控制研究[J]. 中国电机工程学报, 2019, 39(24): 7159-7167. Liu Haitao, Xiong Xiong, Ji Yu, et al.Cluster control research of multi-microgrids system under DC distribution system[J]. Proceedings of the CSEE, 2019, 39(24): 7159-7167. [30] Goyal M, Ghosh A.Microgrids interconnection to support mutually during any contingency[J]. Sustainable Energy, Grids and Networks, 2016, 6: 100-108. [31] 李翔宇, 赵冬梅. 分散架构下多虚拟电厂分布式协同优化调度[J]. 电工技术学报, 2023, 38(7): 1852-1863. Li Xiangyu, Zhao Dongmei.Distributed coordinated optimal scheduling of multiple virtual power plants based on decentralized control structure[J]. Transa- ctions of China Electrotechnical Society, 2023, 38(7): 1852-1863. [32] Khayyam S, Ponci F, Goikoetxea J, et al.Railway energy management system: centralized-decentralized automation architecture[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 1164-1175. [33] 马庆, 邓长虹. 基于单/多智能体简化强化学习的电力系统无功电压控制方法[J]. 电工技术学报, 2024, 39(5): 1300-1312. Ma Qing, Deng Changhong.Single/multi agent simplified deep reinforcement learning based volt-var control of power system[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1300-1312. [34] 李炎. 一种基于深度强化学习的多储能系统分层协同控制方法: 中国, 202311643798.7[P].2023-12-04.