Hierarchical Coordinated Power Control Strategy for AC-DC Hybrid Microgrid with Hybrid Energy Storage
Wang Li1, Hu Jiacheng1, Zeng Xiangjun1, Zhao Bin1, Zhang Zhiguo2
1. School of Electrical and Information Engineering Changsha University of Science and Technology Changsha 410004 China; 2. Tibet East China Hydropower Equipment Co. Ltd Lhasa 851414 China
Abstract:In the AC-DC hybrid microgrid, the AC and DC subgrids are interconnected through converters, providing the hybrid microgrid with the advantages of both AC and DC microgrids. However, this interconnection can cause power fluctuations in subgrids and affect each other, leading to system frequency and voltage fluctuations. Relying on interlinking converters to coordinate intergrid power cannot effectively alleviate these fluctuations, and a single battery energy storage cannot meet power requirements in multiple scenarios. Therefore, this paper proposes a coordinated power control strategy using a hybrid energy storage system (HESS) with the coordination of supercapacitors, batteries, and interlinking converters. The hybrid energy storage is connected as a separate subgrid to the common DC bus, and droop control is used to stabilize the voltage of the common DC bus. The utilization of supercapacitor energy storage capacity needs to be improved, and battery charging and discharging times in traditional hybrid energy storage control are ineffective. Thus, an improved hybrid energy storage control strategy is proposed by dividing the state of charge into five working modes. The operating modes of AC-DC hybrid microgrids are divided based on the fluctuation value of fpu and Udc.pu to reduce the charging and discharging frequency of HESS, extend the service life, and avoid unnecessary power flow caused by the frequent start-up of bidirectional AC-DC converters. Two levels of hierarchical coordinated control (power autonomy and mutual power support) are proposed, and the mutual power support mode is divided into three types based on different surplus and loss states of the AC and DC subnets. Finally, fifteen operating conditions are obtained with the five operating modes of HESS and three mutual power support modes of AC-DC subgrids. Seven operating conditions are summarized by analyzing the similar power flow between networks under operating conditions. A simulation model is built to analyze the power flow between AC and DC microgrids under five operating modes of HESS. The effectiveness of the proposed control strategy is verified. Through simulation analysis, the following conclusions can be drawn. (1) The improved HESS control strategy fully utilizes the advantages of high-power density and fast response speed of supercapacitors. Batteries can be used to charge and discharge supercapacitors to avoid overcharging or discharging. (2) The mutual power support mode is achieved by coordinating the energy storage subgrid and interlinking converter. HESS participates in intergrid mutual power support, and operating mode adaptive switching is achieved by controlling Pscref and Pbatref. (3) Typical operating conditions of HESS in five different modes are simulated. The output power of various distributed power sources and intergrid support power is obtained based on the hierarchical coordinated control strategy for AC-DC hybrid microgrids. The stability of grid voltage and frequency is maintained during power fluctuations in load, wind, and photovoltaic output, ensuring the power supply reliability of hybrid microgrids.
王力, 胡佳成, 曾祥君, 赵斌, 张治国. 基于混合储能的交直流混联微电网功率分级协调控制策略[J]. 电工技术学报, 2024, 39(8): 2311-2324.
Wang Li, Hu Jiacheng, Zeng Xiangjun, Zhao Bin, Zhang Zhiguo. Hierarchical Coordinated Power Control Strategy for AC-DC Hybrid Microgrid with Hybrid Energy Storage. Transactions of China Electrotechnical Society, 2024, 39(8): 2311-2324.
[1] 刘迎澍, 陈曦, 李斌, 等. 多微网系统关键技术综述[J]. 电网技术, 2020, 44(10): 3804-3820. Liu Yingshu, Chen Xi, Li Bin, et al.State of art of the key technologies of multiple microgrids system[J]. Power System Technology, 2020, 44(10): 3804-3820. [2] 郑重, 苗世洪, 李超, 等. 面向微型能源互联网接入的交直流配电网协同优化调度策略[J]. 电工技术学报, 2022, 37(1): 192-207. Zheng Zhong, Miao Shihong, Li Chao, et al.Coordinated optimal dispatching strategy of AC/DC distribution network for the integration of micro energy internet[J]. Transactions of China Electro- technical Society, 2022, 37(1): 192-207. [3] Ahmed M, Meegahapola L, Datta M, et al.A novel hybrid AC/DC microgrid architecture with a central energy storage system[J]. IEEE Transactions on Power Delivery, 2022, 37(3): 2060-2070. [4] 杨捷, 金新民, 杨晓亮, 等. 交直流混合微网功率控制技术研究综述[J]. 电网技术, 2017, 41(1): 29-39. Yang Jie, Jin Xinmin, Yang Xiaoliang, et al.Overview on power control technologies in hybrid AC-DC microgrid[J]. Power System Technology, 2017, 41(1): 29-39. [5] 刘子文, 苗世洪, 范志华, 等. 孤立交直流混合微电网双向AC/DC换流器功率控制与电压波动抑制策略[J]. 中国电机工程学报, 2019, 39(21): 6225-6238. Liu Ziwen, Miao Shihong, Fan Zhihua, et al.Power control and voltage fluctuation suppression strategy of the bidirectional AC/DC converter in the islanding hybrid microgrid[J]. Proceedings of the CSEE, 2019, 39(21): 6225-6238. [6] 孔惠文, 马静, 程鹏, 等. 基于子电网优先级驱动的交直流混合微电网集群双向互联变流器分散式控制策略[J/OL]. 电工技术学报, 2023, DOI: 10.19595/ j.cnki.1000-6753.tces.231379. Kong Huiwen, Ma Jing, Cheng Peng, et al.Decentra- lized control strategy for hybrid AC/DC microgrid cluster bidirectional interlinking converters based on sub-grid priority drive[J/OL]. Transactions of China Electrotechnical Society, 2023, DOI: 10.19595/j.cnki. 1000-6753.tces.231379. [7] 张国荣, 丁晓通, 彭勃, 等. 交直流混合微电网互联变流器改进控制策略[J]. 电力系统保护与控制, 2020, 48(14): 50-58. Zhang Guorong, Ding Xiaotong, Peng Bo, et al.Improved control strategy for an AC/DC hybrid microgrid interlinking converter[J]. Power System Protection and Control, 2020, 48(14): 50-58. [8] Loh P C, Li Ding, Chai Yikang, et al.Autonomous operation of hybrid microgrid with AC and DC subgrids[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2214-2223. [9] 田浩, 黄文焘, 余墨多, 等. 交直流混合独立微网互联变换器自适应双向下垂控制策略[J]. 中国电机工程学报, 2022, 42(19): 7063-7074. Tian Hao, Huang Wentao, Yu Moduo, et al.Adaptive bidirectional droop control strategy for the inter- linking converter in the islanding hybrid AC/DC microgrids[J]. Proceedings of the CSEE, 2022, 42(19): 7063-7074. [10] 李峰, 秦文萍, 任春光, 等. 混合微电网交直流母线接口变换器虚拟同步电机控制策略[J]. 中国电机工程学报, 2019, 39(13): 3776-3788. Li Feng, Qin Wenping, Ren Chunguang, et al.Virtual synchronous motor control strategy for interfacing converter in hybrid AC/DC micro-grid[J]. Pro- ceedings of the CSEE, 2019, 39(13): 3776-3788. [11] 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47(4): 190-207. Cao Wei, Qin Huancheng, Lu Jianzhong, et al.Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of Electric Power Systems, 2023, 47(4): 190-207. [12] Navarro-Rodríguez Á, García P, Gómez-Aleixandre C, et al.Cooperative primary control of a hybrid AC/DC microgrid based on AC/DC virtual generators[J]. IEEE Transactions on Energy Conversion, 2022, 37(4): 2837-2850. [13] 杜燕, 言明明, 王鑫, 等. 交直流子网双边惯量约束下互联变流器动态功率控制策略[J]. 电力系统自动化, 2023, 47(4): 172-179. Du Yan, Yan Mingming, Wang Xin, et al.Dynamic power control strategy for interlinking converter under bilateral inertia constraints in AC/DC subgrid[J]. Automation of Electric Power Systems, 2023, 47(4): 172-179. [14] 朱永强, 张泉, 刘康, 等. 交直流混合微电网分段协调控制策略[J]. 电力系统自动化, 2020, 44(6): 52-58. Zhu Yongqiang, Zhang Quan, Liu Kang, et al.Segmented coordination control strategy for hybrid AC/DC microgrid[J]. Automation of Electric Power Systems, 2020, 44(6): 52-58. [15] 郭慧, 汪飞, 顾永文, 等. 基于电压分层控制的直流微电网及其储能扩容单元功率协调控制策略[J]. 电工技术学报, 2022, 37(12): 3117-3131. Guo Hui, Wang Fei, Gu Yongwen, et al.Coordinated power control strategy for DC microgrid and storage expansion unit based on voltage hierarchical control[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3117-3131. [16] 张靖, 张志文, 胡斯佳, 等. 独立微电网风储协同调频的功率柔性分配策略[J]. 电工技术学报, 2022, 37(15): 3767-3780. Zhang Jing, Zhang Zhiwen, Hu Sijia, et al.A flexible power distribution strategy with wind turbine generator and energy storage for frequency regulation in isolated microgrid[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3767-3780. [17] 杨向真, 李玉宁, 杜燕, 等. 交直流混合微电网多模式功率协调控制策略[J]. 高电压技术, 2021, 47(4): 1262-1274. Yang Xiangzhen, Li Yuning, Du Yan, et al.Multi-mode power coordination control strategy for AC/DC hybrid microgrid[J]. High Voltage Engin- eering, 2021, 47(4): 1262-1274. [18] 王浩, 康博阳, 郑征, 等. 考虑电动汽车灵活储能的交直流混合微电网功率协调控制策略[J]. 电网技术, 2023, 47(5): 2009-2025. Wang Hao, Kang Boyang, Zheng Zheng, et al.Power coordinated control strategy of AC-DC hybrid microgrid considering flexible energy storage for electric vehicles[J]. Power System Technology, 2023, 47(5): 2009-2025. [19] 范培潇, 杨军, 温裕鑫, 等. 基于可进化模型预测控制的含电动汽车多微电网智能发电控制策略[J]. 电工技术学报, 2024, 39(3): 699-713. Fan Peixiao, Yang jun, Wen Yuxin, et al. A multi microgrid intelligent generation control strategy with electric vehicles based on evolutionary model predictive control[J]. Transactions of China Elec- trotechnical Society, 2024, 39(3): 699-713. [20] Xia Yanghong, Wei Wei, Yu Miao, et al.Power management for a hybrid AC/DC microgrid with multiple subgrids[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3520-3533. [21] Wang Peng, Jin Chi, Zhu Dexuan, et al.Distributed control for autonomous operation of a three-port AC/DC/DS hybrid microgrid[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1279-1290. [22] 米阳, 王鹏, 邓锦, 等. 孤岛交直流混合微电网群分层协调控制[J]. 电力系统保护与控制, 2021, 49(20): 1-8. Mi Yang, Wang Peng, Deng Jin, et al.Hierarchical coordinated control of island AC/DC hybrid micro- grids[J]. Power System Protection and Control, 2021, 49(20): 1-8. [23] 孟润泉, 刘家赢, 文波, 等. 直流微网混合储能控制及系统分层协调控制策略[J]. 高电压技术, 2015, 41(7): 2186-2193. Meng Runquan, Liu Jiaying, Wen Bo, et al.Hybrid energy storage control and system hierarchical coordinated control strategy for DC microgrids[J]. High Voltage Engineering, 2015, 41(7): 2186-2193. [24] 李学斌, 刘建伟. 采用二阶滤波的混合储能系统实时功率分配方法[J]. 电网技术, 2019, 43(5): 1650-1657. Li Xuebin, Liu Jianwei.Real-time power distribution method adopting second-order filtering for hybrid energy storage system[J]. Power System Technology, 2019, 43(5): 1650-1657. [25] Bharatee A, Ray P K, Ghosh A.A power management scheme for grid-connected PV integrated with hybrid energy storage system[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(4): 954-963. [26] 赵永熹, 刘剑, 周建萍, 等. 基于稳态功率修正的混合储能新型控制策略研究[J]. 可再生能源, 2021, 39(5): 666-672. Zhao Yongxi, Liu Jian, Zhou Jianping, et al.Research on new control strategy of hybrid energy storage sources based on steady-state power correction[J]. Renewable Energy Resources, 2021, 39(5): 666-672. [27] 李鲁阳, 陈龙翔, 陈磊, 等. 用于新能源一次调频的储能经济配置研究[J/OL]. 中国电力, 2023: 1-12. (2023-11-20). https://kns.cnki.net/kcms/detail/11.3265.TM.20231117.1545.016.html. Li Luyang, Chen Longxiang, Chen Lei, et al. Research on economic configuration of energy storage for assisting new energy in primary frequency regulation[J/OL]. Electric Power, 2023: 1-12. (2023- 11-20). https://kns.cnki.net/kcms/detail/11.3265.TM.20231117.1545.016.html.