电工技术学报  2022, Vol. 37 Issue (7): 1703-1725    DOI: 10.19595/j.cnki.1000-6753.tces.211030
电工理论与新技术 |
基于电化学模型的锂离子电池荷电状态估计方法综述
武龙星, 庞辉, 晋佳敏, 耿院飞, 刘凯
西安理工大学机械与精密仪器工程学院 西安 710048
A Review of SOC Estimation Methods for Lithium-Ion Batteries Based on Electrochemical Model
Wu Longxing, Pang Hui, Jin Jiamin, Geng Yuanfei, Liu Kai
School of Mechanical and Precision Instrument Engineering Xi’an University of Technology Xi’an 710048 China
全文: PDF (1534 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 荷电状态(SOC)的准确估计是电池管理系统的重要功能之一。当前,基于模型的方法是实现锂离子电池SOC估计最常用的解决方案。相比于等效电路模型(ECM),由于电化学模型(EM)能够实现耦合电化学机理的SOC估计,逐渐成为下一代高级电池管理系统的研究重点。然而,现有基于模型的锂离子电池SOC估计方法的研究大多集中在ECM上,很少对EM进行系统讨论。为此,该文针对基于EM的SOC估计方法进行了全面综述。首先,概述了EM的建模及参数识别方法;然后,对基于EM的SOC估计方法进行了讨论;最后,针对目前基于EM的SOC估计存在的挑战和未来发展趋势进行了讨论。该文提出的观点有望促进现有基于EM的高级电池管理系统算法的开发和应用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
武龙星
庞辉
晋佳敏
耿院飞
刘凯
关键词 锂离子电池荷电状态电化学模型电池管理系统    
Abstract:Accurate state of charge (SOC) estimation is one of the important functions for battery management system. Currently, the model-based approach is the most widely used solution for lithium-ion battery SOC estimation. Compared with the equivalent circuit model (ECM), the electrochemical model (EM) has gradually become the research focus of the next generation advanced battery management systems due to its ability to estimate the SOC coupled with electrochemical mechanism. However, the existing review studies of the model-based battery SOC estimation methods are mostly focused on ECMs, and the EMs are rarely discussed systematically. For this reason, the EM-based SOC estimation algorithms are reviewed in this paper. First, the modeling and parameter identification methods of EMs are summarized, and the existing approaches to EM-based SOC estimation are discussed. Then, existing challenges and the future prospects of the EM-based SOC estimation are presented. The insights presented in this paper are expected to catalyze the development and application of the EM-based advanced battery management system algorithms.
Key wordsLithium-ion batteries    state of charge    electrochemical model    battery management system   
收稿日期: 2021-07-12     
PACS: TM912  
基金资助:国家自然科学基金资助项目(51675423)
通讯作者: 庞 辉 男,1980年生,博士,副教授,研究方向为车辆动力学与控制理论、新能源车用动力电池/超级电池管理。E-mail:huipang@163.com   
作者简介: 武龙星 男,1988年生,博士研究生,研究方向为车用动力电池电化学机理建模及状态估计。E-mail:batterywu@163.com
引用本文:   
武龙星, 庞辉, 晋佳敏, 耿院飞, 刘凯. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. Wu Longxing, Pang Hui, Jin Jiamin, Geng Yuanfei, Liu Kai. A Review of SOC Estimation Methods for Lithium-Ion Batteries Based on Electrochemical Model. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.211030          https://dgjsxb.ces-transaction.com/CN/Y2022/V37/I7/1703