State of Health Estimation for Lithium-Ion Batteries Based on Peak Region Feature Parameters of Incremental Capacity Curve
Yang Shengjie1, Luo Bingyang1, Wang Jing1, Kang Jianqiang2, Zhu Guorong1
1. Power Electronics Technology Research InstituteWuhan University of Technology Wuhan 430070 China; 2. Hubei Key Laboratory of Advanced Technology for Automotive Components Wuhan University of Technology Wuhan 430070 China
Abstract:At present, researchers have widely used feature parameters (FPs) of incremental capacity (IC) curve to estimate the state of health (SOH) of lithium ion batteries. The FPs are commonly extracted from a whole peak in the IC curve. The method fails to consider the effect of the FPs extracted from different ranges of the peak on the accuracy of estimated SOH. In order to provide an accurate SOH estimation, we select the FPs from the peak region(△Vreg,a state of charge range of a peak). Then SOH estimation is achieved by setting up the relationship between the SOH and the FPs based on Gaussian process (GP) regression. Results show that the accuracy of SOH estimation is sensitive to the different FPs, according to the estimated SOH under the three △Vreg. Furthermore, the comparison of the eleven △Vreg of FPs that the data come from the NASA No.5, 6, 7 and 18 batteries between 23.1% and 100% is studied. It is found that the estimated SOH root mean square error is less than 2% when the △Vreg of No.6,7 and 18 batteries are in the regions of [53.4%,88.1%],[50.4%,92.3%] and [42.3%,100%], respectively. It is indicated that that SOH estimation is more sensitive to the above peak region. This method gives an approach to achieve the high precision of SOH estimation because we prove that the SOH estimation is sensitive to △Vreg.
杨胜杰, 罗冰洋, 王菁, 康健强, 朱国荣. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287.
Yang Shengjie, Luo Bingyang, Wang Jing, Kang Jianqiang, Zhu Guorong. State of Health Estimation for Lithium-Ion Batteries Based on Peak Region Feature Parameters of Incremental Capacity Curve. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287.
[1] 姚芳, 田家益, 黄凯. 锂电池组健康状态计算方法综述[J]. 电源技术, 2018, 42(1): 135-138. Yao Fang, TianJiayi, Huang Kai. Review of state of health calculation method for lithium battery[J]. Chinese Journal of Power Sources, 2018, 42(1): 135-138. [2] 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13): 172-183. Li Jianlin, Li Yaxin, Lü Chao, et al.Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of Electric Power Systems, 2020, 44(13): 172-183. [3] Jin X, Vora A, Hoshing V, et al.Physically-based reduced-order capacity loss model for graphite anodes in lithium-ion battery cells[J]. Journal of Power Sources, 2017, 342: 750-761. [4] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J].电工技术学报, 2020, 35(19): 4106-4119. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. [5] 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J].电工技术学报, 2019, 34(18): 3937-3948. Yan Xiangwu, Deng Haoran, Guo Qi, et al.Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948. [6] Wu Ji, Wang Yujie, Zhang Xu, et al.A novel state of health estimation method of lithium-ion battery using group method of data handling[J]. Journal of Power Sources, 2016, 327: 457-464. [7] Dong Hancheng, Jin Xiaoning, Lou Yangbing, et al.Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources, 2014, 271: 114-123. [8] 张江帆. 基于高斯过程回归模型的锂电池数据处理[D]. 北京: 北京交通大学, 2017. [9] Guo Zhen, QiuXinping, Hou Guangdong, et al. State of health estimation for lithium ion batteries based on charging curves[J]. Journal of Power Sources, 2014, 249: 457-462. [10] Yang Qingxia, Xu Jun, Cao Binggang, et al.State-of-health estimation of lithium-ion battery based on interval capacity[J]. Energy Procedia, 2017, 105: 2342-2347. [11] Yang Duo, Zhang Xu, Pan Rui, et al.A novel gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384: 387-395. [12] 孙冬, 许爽. 梯次利用锂电池健康状态预测[J]. 电工技术学报, 2018, 33(9): 2121-2129. Sun Dong, XuShuang. State of health prediction of second-use lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2121-2129. [13] 孙丙香, 刘佳, 韩智强, 等. 不同区间衰退路径下锂离子电池的性能相关性及温度适用性分析[J]. 电工技术学报, 2020, 35(9): 2063-2073. Sun Bingxiang, Liu Jia, Han Zhiqiang, et al.Performance correlation and temperature applicability of Li-ion batteries under different range degradation paths[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2063-2073. [14] 李晓宇, 徐佳宁, 胡泽徽,等. 磷酸铁锂电池梯次利用健康特征参数提取方法[J]. 电工技术学报, 2018, 33(1): 9-16. Li Xiaoyu, XuJianing, Hu Zehui, et al. The health parameter estimation method for LiFePO4 battery echelon use[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 9-16. [15] Berecibar M, Garmendia M, Gandiaga I, et al.State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application[J]. Energy, 2016, 103: 784-796. [16] Li Yi, Abdel-Monem M, Gopalakrishnan R, et al.A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373: 40-53. [17] Tang Xiaopeng, ZouChangfu, Yao Ke, et al. A fast estimation algorithm for lithium-ion battery state of health[J]. Journal of Power Sources, 2018, 396: 453-458. [18] BianXiaolei, Liu Longcheng, Yan Jinying. A model for state-of-health estimation of lithium ion batteries based on charging profiles[J]. Energy, 2019, 177: 57-65. [19] Li Xue, Jiang Jiuchun, Wang Leyi, et al.A capacity model based on charging process for state of health estimation of lithium ion batteries[J]. Applied Energy, 2016, 177: 537-543. [20] 张昊. 基于IC曲线特征参数的锂离子电池SOH估计及DSP实现[D]. 北京: 北京交通大学, 2018. [21] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978. GuoYongfang, Huang Kai, Li Zhigang. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978. [22] 杨刘倩, 詹昌辉, 卢雪梅. 电动汽车锂电池健康状态估算方法研究[J]. 电源技术, 2016, 40(4): 823-825, 853. Yang Liuqian, Zhan Changhui, Lu Xuemei.Research on estimation method of healthy status for EV lithium battery[J]. Chinese Journal of Power Sources, 2016, 40(4): 823-825, 853. [23] Richardson R R, Osborne M A, Howey D A.Battery health prediction under generalized conditions using a gaussian process transition model[J]. Journal of Energy Storage, 2019, 23: 320-328. [24] Richardson R R, Birkl C R, Osborne M A, et al.Gaussian process regression for in-situ capacity estimation of lithium-ion batteries[J]. IEEE Transactions on Industrial Informatics, 2018, 15(1): 127-138.