Abstract:Frequent electric vehicle safety accidents have seriously affected the healthy development of the electric vehicle industry. Among them, safety accidents caused by overcharging account for a high proportion. In order to study the combustion and explosion accidents caused by thermal runaway caused by overcharge of lithium ion battery electric vehicles, this article first conducted an overcharge runaway experiment on lithium iron phosphate battery modules, and found that the battery modules exploded in the process of thermal runaway development. The main component is vaporized electrolyte. Secondly, a geometric model of a small electric vehicle was established based on the explosion simulation software FLACS. The explosion characteristics of the electric vehicle were studied using the vaporized electrolyte caused by the overcharge of the lithium-ion battery as fuel, and the explosion venting effects of pressure relief designs in different directions were compared and analyzed. The study found that the design of different pressure relief positions has a significant effect on the direction of the explosion shock wave diffusion. When the pressure relief hole is arranged below the side of the battery compartment, the pressure relief effect is the best, which can effectively reduce the explosion intensity. Under a reasonable design, changing the size of the pressure relief hole and the opening pressure difference can reduce the impact on surrounding vehicles and avoid igniting adjacent vehicles as much as possible.
牛志远, 姜欣, 谢镔, 金阳. 电动汽车过充燃爆事故模拟及安全防护研究[J]. 电工技术学报, 2022, 37(1): 36-47.
Niu Zhiyuan, Jiang Xin, Xie Bin, Jin Yang. Study on Simulation and Safety Protection of Electric Vehicle Overcharge and Explosion Accident. Transactions of China Electrotechnical Society, 2022, 37(1): 36-47.
[1] 陈丽丹, 张尧, Antonio Figueiredo.电动汽车充放电负荷预测研究综述[J]. 电力系统自动化, 2019, 43(10): 177-191. Chen Lidan, Zhang Rao, Antonio Figueiredo.Overview of charging and discharging load forcasting for electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(10): 177-191. [2] 吴赋章, 杨军, 林洋佳, 等. 考虑用户有限理性的电动汽车时空行为特性[J]. 电工技术学报, 2020, 35(7): 1563-1574. Wu Fuzhang, Yang Jun, Lin Yangjia, et al. Research on spatiotemporal behavior of electric vehicles considering the users’bounded rationality[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1563-1574. [3] 贾龙, 胡泽春, 宋永华, 等. 储能和电动汽车充电站与配电网的联合规划研究[J]. 中国电机工程学报, 2017, 37(1): 73-84. Jia Long, Hu Zechun, Song Yonghua, et al. Joint planning of distribution networks with distributed energy storage systems and electric vehicle charging stations[J]. Proceedings of the CSEE, 2017, 37(1): 73-84. [4] 刘芳, 马杰, 苏卫星, 等. 基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法[J]. 电工技术学报, 2020, 35(4): 698-707. Liu Fang, Ma Jie, Su Weixing, et al. State of charge estimation method of electric vehicle power battery life cycle based on auto regression extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 698-707. [5] 张献, 任年振, 杨庆新, 等. 电动汽车无线充电自整定控制[J]. 电工技术学报, 2020, 35(23): 4825-4834. Zhang xian, Ren nianzhen, Yang qingxin, et al. Research on self-tuning control strategy of wireless charging for electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4825-4834. [6] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al. application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [7] 温泉, 盛苗苗, 董天哥.论新能源汽车锂离子电池的安全问题[J]. 机械制造, 2019, 57(1): 55-56, 93. Wen Quan, Sheng Miaomiao, Dong Tiange.Discussion on the safety of lithium-ion batteries for new energy vehicles[J]. Machinery Manufacturing, 2019, 57(1): 55-56, 93. [8] 王雄, 鲍建勇, 王新.电动汽车锂离子电池燃烧风险与控制[J]. 汽车文摘, 2020(4): 5-17. Wang Xiong, Bao Jianyong, Wang Xin.Fire risk and control of lithium ion battery in electric vehicle[J]. Automotive Digest, 2020(4): 5-17. [9] 何向明, 冯旭宁, 欧阳明高.车用锂离子动力电池系统的安全性[J]. 科技导报, 2016, 34(6): 32-38. He Xiangming, Feng Xuning, Ouyang Minggao.Safety of lithium-ion power battery system for vehicle[J]. Science and Technology Report, 2016, 34(6): 32-38. [10] 王帅, 尹忠东, 郑重, 等. 电池模组一致性影响因素在放电电压曲线簇上的表征[J]. 电工技术学报, 2020, 35(8): 1836-1847. Wang shuai, Yin zhongdong, Zheng Zhong, et al. Representation of influence factors for battery module consistency on discharge voltage curves[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1836-1847. [11] 孙丙香, 刘佳, 韩智强, 等. 不同区间衰退路径下锂离子电池的性能相关性及温度适用性分析[J]. 电工技术学报, 2020, 35(9): 2063-2073. Sun bingxiang, Liu jia, Han zhiqiang, et al. Performance correlation and temperature applicability of Li-ion batteries under different range degradation paths[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2063-2073. [12] Austin R B, Erik J A, Kevin C M, et al. Explosion hazards from lithium-ion battery vent gas[J]. Journal of Power Sources, 2020, 446. [13] 冯旭宁.车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. [14] Wang Qiangsong, Mao Binbin, Stanislav I S, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. [15] Huang Lüwei, Zhang Zhaosheng, Wang Zhenpo, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: 100811. [16] 李哲.纯电动汽车磷酸铁锂电池性能研究[D]. 北京: 清华大学, 2011. [17] Hong Jichao, Wang Zhenpo, Liu Peng, et al. Big-data-based thermal runaway prognosis of battery systems for electric vehicles[J]. Energies, 2017, 10(7): 919. [18] Baird A R, Archibald E J, Marr K C, et al. Explosion hazards from lithium-ion battery vent gas[J]. Journal of Power Sources, 2020, DOI: 10.1016/jpowsour.2019.227257. [19] Golubkov A W, Fuchs D, Wagner J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advance, 2014, 4(7): 3633-3642. [20] Liao Zhenhai, Zhang Shen, Li Kang, et al. Hazard analysis of thermally abused lithium-ion batteries at different state of charges[J]. Journal of Energy Storage, 2020, 27:101065(9). [21] 郭超超, 张青松.锂离子电池热解气体爆炸极限测定及其危险性分析[J]. 中国安全生产科学技术, 2016, 12(9): 46-49. Guo Chaochao, Zhang Qingsong.Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J]. Journal of Safety Science and Technology, 2016, 12(9): 46-49. [22] Arntzen B J.Modeling of turbulence and combustion for simulation of gas explosions in complex geometries[D]. Trondheim: Norwegian University of Science and Technology, 1998. [23] 孙宜听, 宗梦然, 黄强, 等. 软包和硬壳磷酸铁锂单体电池过充热传播研究[J]. 电力工程技术, 2020, 39(6): 191-198, 219. Sun Yiting, Zong Mengran, Huang Qiang, et al. Thermal propagation process between the pouch and aluminum LFP battery under the condition of overcharge[J]. Electric Power Engineering Technology, 2020, 39(6): 191-198, 219. [24] 赵蓝天, 金阳, 赵智兴, 等. 磷酸铁锂电池模组过充热失控特性及细水雾灭火效果[J]. 电力工程技术, 2021, 40(1): 195-200, 207. Zhao Lantian, Jin Yang, Zhao Zhixing, et al. Thermal runaway characteristic of lithium iron phosphate battery modules through overcharge and the fire extinguishing effect of water mist[J]. Electric Power Engineering Technology, 2021, 40(1): 195-200+207. [25] 许满贵, 徐精彩.工业可燃气体爆炸极限及其计算[J]. 西安科技大学学报, 2005, 25(2):139-142. Xu Mangui, Xu Jingcai.Explosion limit and calculated methods of combustible gas[J]. Journal of Xi'an University of Science and Technology, 2005, 25(2): 139-142. [26] 李静媛, 赵永志, 郑津洋.加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394. Li Jingyuan, Zhao Yongzhi, Zheng Jinyang.Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refuel station[J]. Journal of Zhejiang University: Engineering Science, 2015, 49(7): 1389-1394. [27] Liang Yang, Pan Xiangmin, Zhang Cunman, et al. The simulation and analysis of leakage and explosion at a renewable hydrogen refuelling station[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22608-22619. [28] Pedersen H H, Middha P.Modelling of vented gas explosions in the CFD tool FLACS[J]. Chemical Engineering Transactions(CET Journal), 2012, 26: 357-362. [29] 徐景德, 李晖, 郝旭.FLACS在受限空间可燃气体爆炸传播研究中的应用[J]. 华北科技学院学报, 2016, 13(3): 7-11. Xu Jingde, Li Hui, Hao Xu.Application of FLACS in the study of numerical simulation of gas explosion in confined space[J]. Journal of North China Institute of Science and Technology, 2016, 13(3): 7-11.