Abstract:In order to monitor the power system load efficiently, this paper proposes a non-invasive monitoring method for its transient and steady-state working conditions. In order to accurately obtain the load working state at any steady-state time, an automatic screening optimized genetic algorithm (AOGA) is proposed, steady-state monitoring model, which transforms the power parameter model into active component model and reactive power component model, establishes double objective function, and solves the problem of monitoring error caused by small influence of high harmonic current and less solving parameters. The AOGA algorithm constructs a self screening program, which filters the results with the same fitness first, and then uses Euclidean distance to judge the power, which solves the defect of misjudgment caused by the same fitness in traditional genetic algorithm (GA). When the load is switched on and off, in order to obtain the switching type accurately, this paper establishes a power-time(P-T) based on power time, In the Matlab/Simulink model of transient monitoring, the discrete Fourier decomposition method is used to extract the power change before and after the transient occurrence, and the action load is identified by comparing the power matching degree; on the basis of power monitoring, the harmonic characteristics are identified by taking the harmonic content of the load as the load characteristics, which further improves the accuracy of the transient load monitoring.
雷怡琴, 孙兆龙, 叶志浩, 武晓康. 电力系统负荷非侵入式监测方法研究[J]. 电工技术学报, 2021, 36(11): 2288-2297.
Lei Yiqin, Sun Zhaolong, Ye Zhihao, Wu Xiaokang. Research on Non-Invasive Load Monitoring Method in Power System. Transactions of China Electrotechnical Society, 2021, 36(11): 2288-2297.
[1] 孙毅. 基于遗传优化的非侵入式家居负荷分解方法[J].电网技术, 2016,40(12):3912-3917. Sun Yi.Anon-intrusive household load monitoring method based on genetic optimization[J]. Power System Technology, 2016,40(12):3912-3917. [2] 刘世成. 基于大数据的非侵入式负荷分解技术研究[J].电力信息与通信技术, 2016,14(12):9-14. Liu Shicheng.Research on non intrusive load decomposition technology based on big data[J]. Electric Power Information and Communication Technology, 2016,14(12):9-14 [3] Martins J F, Lopes R, Lima C, et al.A novel nonintrusive load monitoring system based on the S-transform[C]//2012 13th IEEE International Conference on Optimization of Electrical and Electronic Equipment (OPTIM),Brasov, Romania, 2012: 973-978. [4] Remscrim Z, Paris J, Leeb S B, et al.FPGA-based spectral envelope preprocessor for power monitoring and control[C]//Applied Power Electronics Conference and Exposition(APEC), Palm Springs, CA, USA, 2010: 2194-2201. [5] 张虹,侯宁,葛得初.供需互动分布式发电系统收益-风险组合优化建模及其可靠性分析[J].电工技术学报,2020,35(3):623-635. Zhang Hong,HouNing,GeDechu. Modeling and reliability analysis of benefit-risk portfolio optimization for supply and demand interactive distributed generation system[J]. Transactions of China Electrotechnical Society,2020,35(3):623-635. [6] 刘博, 非侵入式电力负荷监测与分解技术[D].天津:天津大学, 2013. [7] 张义志, 王小君, 和敬涵,等. 考虑供热系统建模的综合能源系统最优能流计算方法[J]. 电工技术学报, 2019, 34(3):562-570. Zhang Yizhi,WangXiaojun,He Jinghan, et al. The optimal energy flow calculation method of comprehensive energy system considering heating system modeling[J].Transactions of China Electrotechnical Society, 2019, 34(3):562-570. [8] 王毅, 张宁, 康重庆, 等.电力用户行为模型:基本概念与研究框架[J].电工技术学报, 2019, 34(10):2056-2068. Wang Yi,Zhang Ning,Kang Chongqing,et al.Electrical consumer behavior model:basic concept and research framework[J].Transactions of China Electrotechnical Society, 2019, 34(10):2056-2068. [9] 曹敏,魏龄, 邹京希, 等.基于暂态过程的非侵人式负荷监测研究[J].水电能源科学,2018,36(8):177-180. Cao Min, Wei Ling, ZouJingxi, et al. Research on non-intrusive load monitoring based on transient state process[J]. Water Resources and Power, 2018,46(5):97-103. [10] 李刚, 于长海, 王天军, 等.居民负荷设备的非侵入式识别方法研究[J].电力信息与通信技术,2017,15(5):54-60. Li Gang, YuChanghai, Wang Tianjun, et al. Non-intrusive identification method for residential appliances[J]. Electric Power Information and Communication Technology, 2017,15(5):54-60. [11] 方红伟, 宋如楠, 冯郁竹, 等.基于差分进化的波浪能转换装置阵列优化[J].电工技术学报, 2019,34(12):2597-2605. Fang Hongwei, Song Runan, Feng Yuzhu, etal. Arrayoptimization of wave energy converters bydifferential evolution algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2597-2605. [12] 姜涛, 王长江, 陈厚合, 等.基于正则化投影孪生支持向量机的电力系统暂态稳定评估.电力系统自动化, 2019, 43(1): 141-148. Jiang Tao, Wang Changjiang, Chen Houhe, etal. Transient stability assessment of power system based onprojectiontwinsupportvectormachine with regularization[J].AutomationofElectricPower Systems, 2019, 43(1):141-148. [13] Srinivasan D,Ng W S,Liew A C.Neural-network-based signature recognition for harmonicsource identification[J].IEEE Transactions on Power Delivery,2006, 21(1):398-405. [14] Jian Liang, Simon K K N, Gail K, et al. Load signature study—Part I: basic concept, structure, and methodology[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 551-560. [15] Najmeddine H,Drissi K E K, Pasquier C, etal.State of art on load monitoring methods[C]//2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 2008:1256-1258. [16] Du Yi, Du Liang, Lu Bin, et al.A review of identification and monitoring methods for electric loads in commercial and residential buildings[C]//IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, 2010: 4527-4533. [17] MarchioriA, HakkarinenD, HanQ, et al.Circuit-level load monitoring for household energy management[J]. IEEE Pervasive Computing, 2011, 10(1): 40-48. [18] He Dawei, DuLiang, YangYi, et al. Frontend electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 2286-2293. [19] 许仪勋, 李旺, 李东东, 等. 基于改进鸡群算法的非侵入式家电负荷分解[J].电力系统保护与控制, 2016, 44(13): 27-32. XuYixun, Li Wang, Li Dongdong, et al. Disaggregation for non-invasive domestic appliances based on the improved chicken swarm optimization algorithm[J]. Power System Protection and Control, 2016,44(13): 27-32. [20] 韩佶, 苗世洪, 李超, 等.计及相关性的电-气-热综合能源系统概率最优能量流[J].电工技术学报, 2019, 34(5):1055-1067. Han Ji, Miao Shihong, Li Chao, et al.Probabilistic optimal energy flow of electricity-gas-heat integrated energy system considering correlation[J]. Transactions of ChinaElectrotechnical Society, 2019, 34(5):1055-1067. [21] 王志超. 住宅用电负荷的非侵入式监测方法研究[D].重庆:重庆大学,2015. [22] 牛卢璐,贾宏杰.一种适用于非侵入式负荷监测的暂态事件检测算法[J].电力系统自动化,2011,35(9):30-35. Niu Lulu,JiaHongjie. Transient event detection algorithm for non-intrusive load monitoring[J].Automation of Electric PowerAystems, 2011, 35(9): 30-35.