Abstract:In view of the traditional noninvasive transient event detection methods are limited to a single electrical feature, they are prone to missed or false detection, and it is difficult to accurately perceive load events. This article uses the characteristics of state domain transition in the feature space when load events occur. A non-invasive load event detection method based on state feature clustering is proposed. In this method, the initial clustering points are searched and determined through the calculation of the difference value of sliding window, and then the Mean-shift algorithm is utilized for state clustering, and the load event occurrence points are determined according to the time domain distribution of the stable state, thus realizing load event detection. Finally, through the test of a variety of common electrical appliances in real experimental scenarios, and the comparison with some existing algorithms, the result shows that the proposed method can achieve load event detection more reliably, and lay the foundation for subsequent accurate load identification.
[1] Farhangi H.The path of the smart grid[J]. IEEE Power & Energy Magazine, 2009, 8(1): 18-28. [2] 张超, 江贤康, 任建文, 等. 基于高级量测体系的用电器分类测量终端的设计[J]. 电气技术, 2010, 11(8): 117-120. Zhang Chao, Jiang Xiankang, Ren Jianwen, et al.A design of classification electrical metering terminal based on AMI[J]. Electrical Engineering, 2010, 11(8): 117-120. [3] 张虹, 侯宁, 葛得初, 等. 供需互动分布式发电系统收益-风险组合优化建模及其可靠性分析[J]. 电工技术学报, 2020, 35(3): 623-635. Zhang Hong, Hou Ning, Ge Dechu, et al.Modeling and reliability analysis of benefit-risk portfolio optimization for supply and demand interactive distributed generation system[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 623-635. [4] 黄伟, 熊伟鹏, 华亮亮, 等. 基于动态调度优先级的主动配电网多目标优化调度[J]. 电工技术学报, 2018, 33(1): 3486-3498. Huang Wei, Xiong Weipeng, Hua Liangliang, et al.Multi-objective optimization dispatch of active distribution network based on dynamic schedule priority[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 3486-3498. [5] 吴润泽, 包正睿, 王文韬, 等. Hadoop架构下基于模式匹配的短期电力负荷预测方法[J]. 电工技术学报, 2018, 33(7): 1542-1551. Wu Runze, Bao Zhengrui, Wang Wentao, et al.Short-term power load forecasting method based on pattern matching in hadoop framework[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1542-1551. [6] 汤波, 林顺富, 陈光, 等. 居民配电网负荷谐波电流发射水平评估方法[J]. 电工技术学报, 2018, 33(3): 533-542. Tang Bo, Lin Shunfu, Chen Guang, et al.The harmonic current emission level of the residential loads in the distribution network[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 533-542. [7] 余贻鑫. 智能电网的技术组成和实现顺序[J]. 南方电网技术, 2009, 3(2): 1-5. Yu Yixin.Technical composition of smart grid and its implementation sequence[J]. Southern Power System Technology, 2009, 3(2): 1-5. [8] 徐青山, 娄藕蝶, 郑爱霞, 等. 基于近邻传播聚类和遗传优化的非侵入式负荷分解方法[J]. 电工技术学报, 2018, 33(16): 3868-3878. Xu Qingshan, Lou Oudie, Zheng Aixia, et al.A non-intrusive load decomposition method based on affinity propagation and genetic algorithm optimization[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3868-3878. [9] 李如意, 黄明山, 周东国, 等. 基于粒子群算法搜索的非侵入式电力负荷分解方法[J]. 电力系统保护与控制, 2016, 44(8): 30-36. Li Ruyi, Huang Mingshan, Zhou Dongguo, et al.Optimized nonintrusive load disaggregation method using particle swarm optimization algorithm[J]. Power System Protection & Control, 2016, 44(8): 30-36. [10] 李如意, 王晓换, 胡美璇, 等. RPROP神经网络在非侵入式负荷分解中的应用[J]. 电力系统保护与控制, 2016, 44(7): 55-61. Li Ruyi, Wang Xiaohuan, Hu Meixuan, et al.Application of RPROP neural network in nonintrusive load decomposition[J]. Power System Protection & Control, 2016, 44(7): 55-61. [11] 崔亮节, 孙毅, 刘耀先, 等. 考虑分时段状态行为的非侵入式负荷分解方法[J]. 电力系统自动化, 2020, 44(5): 215-222. Cui Liangjie, Sun yi, Liu Yaoxian, et al. Non-intrusive load disaggregation method considering time-phased state behavior[J]. Automation of Electric Power Systems, 2020, 44(5): 215-222. [12] 武昕, 焦点, 高宇辰. 基于非侵入式用电数据分解的自适应特征库构建与负荷辨识[J]. 电力系统自动化, 2020, 44(4): 101-114. Wu Xi, Jiao Dian, Gao Yuchen.Construction of adaptive feature library and load identification based on decomposition of non-intrusive power consumption data[J]. Automation of Electric Power Systems, 2020, 44(4): 101-114. [13] 刘兴杰, 曹美晗, 许月娟. 基于改进鸡群算法的非侵入式负荷监测[J]. 电力自动化设备, 2018, 38(5): 235-240. Liu Xingjie, Cao Meihan, Xu Yuejuan.Non-intrusive load monitoring based on improved chicken swarm optimization algorithm[J]. Electric Power Automation Equipment, 2018, 38(5): 235-240. [14] Liang J, Ng S K, Kendall G, et al.Load signature study—part I: basic concept, structure, and methodology[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 551-560. [15] Tsai M, Lin Y.Modern development of an adaptive non-intrusive appliance load monitoring system in electricity energy conservation[J]. Applied Energy, 2012, 96: 55-73. [16] Anderson K D, Berges M E, Ocneanu A, et al.Event detection for non-intrusive load monitoring[C]//38th Annual Conference on IEEE Industrial Electronics Society, Montreal, 2012: 3312-3317. [17] Jin Y, Tebekaemi E, Berges M, et al.A time-frequency approach for event detection in non-intrusive load monitoring[C]//Conference on Signal Processing, Sensor Fusion, and Target Recognition XX, Orlando, 2011: 1-13. [18] Jin Y, Tebekaemi E, Berges M, et al.Robust adaptive event detection in non-intrusive load monitoring for energy aware smart facilities[C]//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, 2011: 4340-4343. [19] Yang C C, Soh C S, Yap V V.A systematic approach to ON-OFF event detection and clustering analysis of non-intrusive appliance load monitoring[J]. Frontiers in Energy, 2015, 9(2): 231-237. [20] 谢政艳. 非侵入式负荷监测的事件检测方法研究[D]. 北京: 华北电力大学(北京), 2018. [21] Gao Haohan, Zhang Li, Qiao Liang, et al.An improved permutation entropy algorithm for non-intrusive load state change detection[C]//2018 IEEE Innovative Smart Grid Technologies-Asia, Singapore, 2018: 886-890. [22] 牛卢璐, 贾宏杰. 一种适用于非侵入式负荷监测的暂态事件检测算法[J]. 电力系统自动化, 2011, 35(9): 30-35. Niu Lulu, Jia Hongjie.Transient event detection algorithm for non-intrusive load monitoring[J]. Automation of Electric Power Systems, 2011, 35(9): 30-35. [23] Lin Shanfu, Zhao Lunjia, Li Fangxing, et al.A nonintrusive load identification method for residential applications based on quadratic programming[J]. Electric Power Systems Research, 2016, 133: 241-248. [24] 肖江, Auger F, 荆朝霞, 等. 基于贝叶斯信息准则的非侵入式负荷事件检测算法[J]. 电力系统保护与控制, 2018, 46(22): 8-14. Xiao Jiang, Auger F, Jing Zhaoxia, et al.Non-intrusive load event detection algorithm based on Bayesian information criterion[J]. Power System Protection & Control, 2018, 46(22): 8-14. [25] Hart G W.Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870-1891. [26] 余贻鑫, 刘博, 栾文鹏. 非侵入式居民电力负荷监测与分解技术[J]. 南方电网技术, 2013, 7(4): 1-5. Yu Yixin, Liu Bo, Luan Wenpeng.Nonintrusive residential load monitoring and decomposition technology[J]. Southern Power System Technology, 2013, 7(4): 1-5. [27] 李秋硕, 肖勇, 李鹏, 等. 用于NILM的电器设备谐波特征研究[J]. 南方电网技术, 2016, 10(10): 73-78. Li Qiushuo, Xiao Yong, Li Peng, et al.Research on harmonic characteristics of electric devices for non-intrusive load monitoring[J]. Southern Power System Technology, 2016, 10(10): 73-78. [28] 孙毅, 崔灿, 陆俊, 等. 基于差量特征提取与模糊聚类的非侵入式负荷监测方法[J]. 电力系统自动化, 2017, 41(4): 86-91. Sun Yi, Cui Can, Lu Jun, et al.Non-intrusive load monitoring method based on delta feature extraction and fuzzy clustering[J]. Automation of Electric Power Systems, 2017, 41(4): 86-91. [29] Fukunaga K, Hostetler L.The estimation of the gradient of a density function, with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 1975, 21(1): 32-40. [30] Cheng Y.Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799. [31] 朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010(12): 139-141. Zhu Lianjiang, Ma Bingxian, Zhao Xuequan.Clustering validity analysis based on silhouette coefficient[J]. Journal of Computer Applications, 2010(12): 139-141. [32] Altrabalsi H, Liao J, Stankovic L, et al.A low-complexity energy disaggregation method: Performance and robustness[C]//2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), Orlando, FL, 2014: 1-8. [33] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. [34] 王宁, 谢敏, 邓佳梁, 等. 基于支持向量机回归组合模型的中长期降温负荷预测[J]. 电力系统保护与控制, 2016, 44(3): 92-97. Wang Ning, Xie Min, Deng Jialiang, et al.Mid-long term temperature-lowering load forecasting based on combination of support vector machine and multiple regression[J]. Power System Protection and Control, 2016, 44(3): 92-97.