Mechanism Research of the Suspended Aerosols on the Corona Characteristics of HVDC Conductors in a Cylindrical Corona Cage
Zhu Yijia1, Lu Tiebing2
1. State Grid Beijing Training Center Beijing 100176 China; 2. State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China
Abstract:In recent years, the impacts of suspended aerosols (haze and fog) on electromagnetic environment of HVDC transmission lines have become an emerging research issue. At present, the mechanism of suspended aerosols on corona characteristics of HVDC conductors is still unclear. In this paper, the effect of aerosols on the ionized field of the current wire was studied using the coaxial cylindrical electrode and burning incense aerosols to simulate haze atmospheric condition. The influence of aerosols of different mass concentrations on the ionized field of HVDC conductors was investigated. The mechanism of suspended aerosols affecting corona characteristics of DC conductors was analyzed and explained in combination with the calculation of test results. It is concluded that, with the increase of suspended aerosols, the degree of corona discharge increases, ions adhesion on suspended aerosols results in a decrease in equivalent mobility and a decrease in measured current density. The increase of total space charge density suspended in the air causes the increase of the measured electric field strength.
祝艺嘉, 卢铁兵. 圆柱电极下悬浮颗粒物对直流导线电晕特性的作用机理研究[J]. 电工技术学报, 2020, 35(6): 1166-1172.
Zhu Yijia, Lu Tiebing. Mechanism Research of the Suspended Aerosols on the Corona Characteristics of HVDC Conductors in a Cylindrical Corona Cage. Transactions of China Electrotechnical Society, 2020, 35(6): 1166-1172.
[1] Maruvada P S.Electric field and ion current environ- ment of HVDC transmission lines: comparison of calculations and measurements[J]. IEEE Transactions on Power Delivery, 2012, 27(1): 401-410. [2] 王东来, 卢铁兵, 崔翔, 等. 两回高压直流输电线路交叉跨越时地面合成电场计算[J]. 电工技术学报, 2017, 32(2): 77-84. Wang Donglai, Lu Tiebing, Cui Xiang, et al.Simulation of total electric field under the crossing of two circuit HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 77-84. [3] 赵畹君. 高压直流输电工程技术[M]. 2版. 北京: 中国电力出版社, 2011. [4] 王振国, 卢铁兵, 王东来. 邻近直流导线时交流电晕电流脉冲特性试验[J]. 电工技术学报, 2017, 32(4): 170-179. Wang Zhenguo, Lu Tiebing, Wang Donglai.Experiment of AC corona current pulses when adjacent to DC conductor[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 170-179. [5] IEEE Std539TM-2005 IEEE standard definitions of terms relating to corona and field effects of overhead power lines[S]. New York: IEEE Power Engineering Society, 2005. [6] Huang Rujin, Zhang Yanlin, Bozzetti C, et al.High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. [7] 陆家榆, 何堃, 马晓倩, 等. 空中颗粒物对直流电晕放电影响研究现状: 颗粒物空间电荷效应[J]. 中国电机工程学报, 2015, 35(23) : 6222-6234. Lu Jiayu, He Kun, Ma Xiaoqian, et al.Current status of study on the effects of airborne particles on DC corona discharge: space-charge effect of particles[J]. Proceedings of the CSEE, 2015, 35(23): 6222-6234. [8] 杨帆, 代锋, 罗汉武, 等. 雾霾天气下的直流输电线路离子流场分布特性及其影响因素[J]. 电工技术学报, 2016, 31(12): 49-57. Yang Fan, Dai Feng, Luo Hanwu, et al.The distribution characteristics and factor influence of the ionized field of DC transmission lines under haze weather[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 49-57. [9] 祝艺嘉. 圆柱电极下颗粒物对直流导线合成电场影响的实验研究[D]. 北京: 华北电力大学, 2017. [10] Fang Chao, Cui Xiang, Zhou Xiangxian, et al.Impact factors in measurements of ion-current density pro- duced by high-voltage DC wire's corona[J]. IEEE Transa- ctions on Power Delivery, 2013, 28(3): 1414-1422. [11] DL/T 1089-2008 直流换流站与线路合成场强、离子流密度测量方法[S]L/T 1089-2008 直流换流站与线路合成场强、离子流密度测量方法[S]. 北京: 中国标准出版社, 2008. [12] Zhu Yijia, Ju Yong, Lu Tiebing, et al.Impact of aerosols on the ionized field of positive HVDC conductor in a cylindrical corona cage[C]//IET International Conference on AC and DC Power Transmission, Beijing, 2016: 1-6. [13] Strauss W.Industrial Gas Cleaning[M]. London: Pergamon Press, 1966. [14] Chen Lan, MacAlpine J M K, Bian Xingming, et al. Comparison of methods for determining corona inception voltages of transmission line conductors[J]. Journal of Electrostatics, 2013, 71(3): 269-275. [15] 杨勇, 陆家榆, 鞠勇. 基于Deutsch 假设法和有限元法的高压直流线路地面合成电场对比分析[J]. 电网技术, 2013, 37(2): 526-532. Yang Yong, Lu Jiayu, Ju Yong.Contrast and analysis on total electric field at ground level under HVDC transmission lines by Deutsch assumption-based method and finite element method[J]. Power System Technology, 2013, 37(2): 526-532. [16] 乔骥, 徐志威, 邹军, 等. 一种消除Deutsch假设的高精度迭代特征线方法求解高压直流输电线路离子流场[J]. 电工技术学报, 2018, 33(19): 4419-4425. Qiao Ji, Xu Zhiwei, Zou Jun, et al.A high-accuracy iterative method of characteristics without Deutsch assumption for calculating ion-flow field of HVDC overhead lines[J]. Transactions of China Electro- technical Society, 2018, 33(19): 4419-4425. [17] Suda T, Sunaga Y.An experimental study of large ion density under the Shiobara HVDC test line[J]. IEEE Transactions on Power Delivery, 1990, 5(3): 1426-1435.