Multi-Objective Hybrid Optimization Method for Coordinated Control of Reactive Power Compensation Devices among Multiple Substations in Large-Scale Power Systems
Dong Ping, Xu Liangde, Liu Mingbo, Qin Chuan
School of Electric Power Engineering South China University of Technology Guangzhou 510640 China
Abstract:Multi-objective reactive power coordinated control model in large-scale power systems has the disadvantages such as the convergence difficulty, time consuming and sensitive to the initial value of discrete variables. A hybrid algorithm adopting subarea solving was presented in this paper to improve efficiency and stability of the solution. Firstly, good subareas in the objective function space of reactive power coordination control problem were searched by NSGA-II algorithm. Optimal solution set of each good subarea could be solved by NBI+GAMS method quickly and the Pareto front could be obtained by filtering all optimal solution sets. Multi-agent parallel technology was introduced to increase the genetic populations and speed up solution. The coordinated results of 22 500kV substations in large power grid verify the quickness and the effectiveness of the proposed hybrid algorithm. Compared with the NSGA-II algorithm, the hybrid algorithm has better convergence speed and distribution of the Pareto solution sets.
董萍, 徐良德, 刘明波, 秦川. 大电网多站点无功补偿协调控制的多目标混合优化方法[J]. 电工技术学报, 2017, 32(2): 271-280.
Dong Ping, Xu Liangde, Liu Mingbo, Qin Chuan. Multi-Objective Hybrid Optimization Method for Coordinated Control of Reactive Power Compensation Devices among Multiple Substations in Large-Scale Power Systems. Transactions of China Electrotechnical Society, 2017, 32(2): 271-280.
[1] 董萍, 徐良德, 刘明波. 多站点无功补偿装置的多目标协调控制[J]. 中国电机工程学报, 2014, 34(4): 587-595. Dong Ping, Xu Liangde, Liu Mingbo. Multi-objective coordinated control of reactive compensation devices among multiple substations[J]. Proceedings of the CSEE, 2014, 34(4): 587-595. [2] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [3] Das I, Dennis J E. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657. [4] Siddiqui S, Azarm S, Gabriel S A. On improving normal boundary intersection method for generation of Pareto frontier[J]. Structural and Multidisciplinary Optimization, 2012, 46(6): 839-852. [5] 李智欢, 李银红, 段献忠. 无功优化多目标模型转换方法的等值线分析[J]. 电工技术学报, 2012, 27(6): 153-160. Li Zhihuan, Li Yinhong, Duan Xianzhong. Analysis of objective-converting methods in multi-objective reactive power optimization using contour lines[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 153-160. [6] 陈前宇, 陈维荣, 戴朝华. 电力系统无功优化多目标处理与算法改进[J]. 电力系统保护与控制, 2014, 42(5): 129-135. Chen Qianyu, Chen Weirong, Dai Chaohua. Multi- objective reactive power optimization and improve- ment of particle swarm algorithm[J]. Power System Protection and Control, 2014, 42(5): 129-135. [7] 李娟, 杨琳, 刘金龙, 等. 基于自适应混沌粒子群优化算法的多目标无功优化[J]. 电力系统保护与控制, 2011, 39(9): 26-31. Li Juan, Yang Lin, Liu Jinlong, et al. Multi-objective reactive power optimization based on adaptive chaos particle swarm optimization algorithm[J]. Power System Protection and Control, 2011, 39(9): 26-31. [8] 文娟, 谭阳红, 雷可君. 基于量子粒子群多目标优化的配电网动态重构[J]. 电力系统保护与控制, 2015, 43(16): 73-78. Wen Juan, Tan Yanghong, Lei Kejun. Multi- objective optimization of distribution network dynamic reconfiguration based on integer coded quantum particle swarm optimization algorithm[J]. Power System Protection Control, 2015, 43(16): 73-78. [9] 李鑫滨, 朱庆军. 一种改进粒子群优化算法在多目标无功优化中的应用[J]. 电工技术学报, 2010, 25(7): 137-143. Li Xinbin, Zhu Qingjun. Application of improved particle swarm optimization algorithm to multi- objective reactive power optimization[J]. Transa- ctions of China Electrotechnical Society, 2010, 25(7): 137-143. [9] Merz P, Freisleben B. Fiiness landseaPes, memetie algorithms, and greedy operators for graph biparti- tioning[J]. Evolutionary Computation, 2000, 8(l): 61-91. [10] Shukla P K, Deb K. On finding multiple Pareto- optimal solutions using classical and evolutionary generating methods[J]. European Journal of Opera- tional Research, 2007, 181(3): 1630-1652. [11] 邸弢, 李华强, 范锫. 基于奇异值分解和内点法的交直流系统无功优化[J]. 电工技术学报, 2009, 24(2): 158-163. Di Tao, Li Huaqiang, Fan Pei. Reactive power optimaztion of AC/DC power system based on singular value decomposition and interior point method[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 158-163. [12] Pires D F, Antunes C H, Martins A G. NSGA-II with local search for a multi-objective reactive power compensation problem[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 313-324. [13] Ramesh S, Kannan S, Baskar S. Application of modified NSGA-II algorithm to multi-objective reactive power planning[J]. Applied Soft Computing, 2012, 12(2): 741-753. [14] 潘哲龙, 张伯明, 孙宏斌, 等. 分布计算的遗传算法在无功优化中的应用[J]. 电力系统自动化, 2001, 25(12): 37-41. Pan Zhelong, Zhang Boming, Sun Hongbin, et al. A distributed genetic algorithm for reactive power optimization[J]. Automation of Electric Power System, 2001, 25(12): 37-41. [15] 陈得宇, 张仁忠, 沈继红, 等. 基于适应性权重遗传算法的多目标无功优化研究[J]. 电力系统保护与控制, 2010, 38(6): 1-7. Chen Deyu, Zhang Renzhong, Shen Jihong, et al. Study on multi-objective reactive power optimi- zation based on genetic algorithm with adaptive weight[J]. Power System Protection and Control, 2010, 38(6): 1-7. [16] Liu F, Chung C Y, Wong K P, et al. Hybrid immune genetic method for dynamic reactive power optimi- zation[C]//IEEE International Conference on Power System Technology, 2006: 1-6. [17] GAMS Development Corporation. GAMS, the solver manuals. http://www.gams.com/solvers/index.htm[EB/OL]. Washington: GAMS Development Corporation, 2011. [18] 王锡凡. 现代电力系统分析[M]. 北京: 科学出版社, 2003. [19] IEEE Power & Energy Society Substations Committee. IEEE Std 1031TM-2011 (Revision of IEEE Std 1031- 2000) IEEE guide for the functional specification of transmission static var compensator[S]. 2011. [20] 范玉顺, 曹军威. 多代理系统理论、方法与应用[M]. 北京: 清华大学出版社, 2002. [21] 刘明波, 谢敏, 赵维兴. 大电网最优潮流计算[M]. 北京: 科学出版社, 2010.