Simulation and Experimental Study on the Evaporative Cooling System of HVDC Valve Unit
Huang Wei1, Feng Wei2, Wang Haifeng2, Chen Biao2, Yang Jingjie1
1. China Electric Power Research Institute Beijing 100192 China; 2. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China
Abstract:This paper summarized the heat problem and water cooling technology of HVDC converter valve, and presented applying evaporative cooling technology to HVDC field. A model was designed for the 5-inch thyristors, composed of a wall-type evaporator, gas collecting pipe, liquid tube and condenser, etc. Based on this model, the temperature fields of the thyristors in different power conditions are calculated by FEM. The percentage error between simulation data and experimental result is under 8%. And the results have verified the accuracy of the calculation and test. Studies have shown that the application of evaporative cooling technology makes the temperature distribution of thyristors more uniform, and the increasing of cooling margin can guarantee the current-carrying capacity of HVDC converter valve unit. These results will offer theoretical and design support for using of evaporative cooling technology in HVDC station.
黄伟, 冯维, 王海峰, 陈彪, 杨婧捷. 直流换流阀单元模块蒸发冷却系统的仿真分析与试验[J]. 电工技术学报, 2017, 32(2): 264-270.
Huang Wei, Feng Wei, Wang Haifeng, Chen Biao, Yang Jingjie. Simulation and Experimental Study on the Evaporative Cooling System of HVDC Valve Unit. Transactions of China Electrotechnical Society, 2017, 32(2): 264-270.
[1] 刘一兵. 电子设备散热技术研究[J]. 电子工艺技术, 2007, 28(5): 286-289. Liu Yibing. Research on heat dissipation technique for electronic equipment[J]. Electronics Process Tech- nology, 2007, 28(5): 286-289. [2] 张忠海. 电子设备中高功率器件的强迫风冷散热设计[J]. 电子机械工程, 2005, 21(3): 18-21. Zhang Zhonghai. Thermal design of forced air cooling of high-power components in electronic equipment[J]. Electro-Mechanical Engineering, 2005, 21(3): 18-21. [3] 杨旭, 马静. 电力电子装置强制风冷散热方式的研究[J]. 电力电子技术, 2000, 34(4): 36-38. Yang Xu, Ma Jing. Research on heatsinking mode of the power electronic equipment with forced cooling[J]. Power Electronics, 2000, 34(4): 36-38. [4] 胡永银, 李兴源, 李宽, 等. 云广特高压直流输电工程换流阀过负荷能力分析与计算[J]. 电力系统保护与控制, 2014, 42(23): 102-106. Hu Yongyin, Li Xingyuan, Li Kuan, et al. Analysis and calculation of converter valve overload capability in Yunnan-Guangdong UHVDC transmission[J]. Power System Protection and Control, 2014, 42(23): 102-106. [5] 段涛, 杨斌, 李贤庆, 等. ±500kV换流站阀水冷系统隐患分析治理[J]. 电力系统保护与控制, 2014, 42(18): 132-138. Duan Tao, Yang Bin, Li Xianqing, et al. Analysis of potential dangers in ±500kV converter station valve water cooling system[J]. Power System Protection and Control, 2014, 42(18): 132-138. [6] 王远游, 郝志杰, 林睿. 天广直流工程换流阀冷却系统腐蚀与沉积[J]. 高电压技术, 2006, 32(9): 80-83. Wang Yuanyou, Hao Zhijie, Lin Rui. Primary analysis on corrosion and deposit in valve cooling system of Tian-Guang HVDC project[J]. High Voltage Engineering, 2006, 32(9): 80-83. [7] 顾国彪, 阮琳, 刘斐辉, 等. 蒸发冷却发展、应用和展望[J]. 电工蒸发冷却技术的应用, 发展和趋势[J]. 电工技术学报, 2015, 30(11): 1-6. Gu Guobiao, Ruan Lin, Liu Feihui, et al. Develop- ments, applications and prospects of evaporative cooling technology[J]. Transactions of China Electro- technical Society, 2015, 30(11): 1-6. [8] 熊斌, 阮琳, 顾国彪, 等. 蒸发冷却技术在高电荷态ECR离子源磁体上的应用——LECR4[J]. 电工技术学报, 2015, 30(10): 219-225. Xiong Bin, Ruan Lin, Gu Guobiao, et al. Application off evaporative cooling technology in magnet of high charge state ECR ion source LECR4[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 219-225. [9] 张帆, 余中军, 王东, 等. 强迫式循环蒸发冷却电机定子三维温度场仿真分析(英文)[J]. 电工技术学报, 2015, 30(14): 80-85. Zhang Fan, Yu Zhongjun, Wang Dong, et al. Stimu- lation analysis of 3D thermal field in the stator of motor with forced evaporative cooling system[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 80-85. [10] 李振国, 田新东, 张广强, 等. 电厂空冷风机变频器蒸发冷却技术改造[J]. 电力自动化设备, 2008, 28(10): 116-119. Li Zhenguo, Tian Xindong, Zhang Guangqiang, et al. The evapotive cooling technology reform for air cooling inverter of power plant[J]. Electrical Power Automation Equipment, 2008, 28(10): 116-119. [11] 李侠, Sachs G, Uder M. ±800kV特高压直流输电用6英寸大功率晶闸管换流阀[J]. 高压电器, 2010, 46(6): 1-5. Li Xia, Sachs G, Uder M. 6 inch high power thyristor valves for ±800kV UHVDC transmission[J]. High Voltage Apparatus, 2010, 46(6): 1-5. [12] 杨一鸣, 曹燕明. 用合成回路进行±800kV向家坝-上海工程换流阀运行试验[J]. 高电压技术, 2010, 36(1): 281-284. Yang Yiming, Cao Yanming, Operational test of Xiangjiaba-Shanghai ±800kV UHVDC thyristor valve on the synthetic test circuit[J]. High Voltage Engineering, 2010, 36(1): 281-284. [13] 卢世才, 刘蕊. 高压直流输电系统换流阀热损耗与冷却介质关系探讨[J]. 广西电力, 2013, 36(2): 59-61. Lu Shicai, Liu Rui. Discussion on relationship between thermal loss and cooling medium of con- verter valve in HVDC transmission system[J]. Guangxi Electric Power, 2013, 36(2): 59-61. [14] 郝江涛, 吕家圣, 罗玉金. 换流站阀冷系统故障原因分析[J]. 广西电力, 2010, 33(2): 33-35. Hao Jiangtao, Lü Jiasheng, Luo Yujin. Analysis of valve cooling system fault in convert station[J]. Guangxi Electric Power, 2010, 33(2): 33-35. [15] 杨光亮, 邰能灵, 郑晓冬. 换流站阀水冷系统导致直流停运隐患分析[J]. 电力系统保护与控制, 2010, 38(18): 199-203. Yang Guangliang, Tai Nengling, Zheng Xiaodong. Analysis of potential dangers leading to HVDC outage in valve cooling system[J]. Power System Protection and Control, 2010, 38(18): 199-203. [16] 张靖周. 高等传热学[M]. 北京: 科学出版社, 2009.