The Corona Characteristics of the Conductor Attached with Water Drops under AC Electrical Field
Hu Qin1, Wu Zhi2, Shu Lichun1, Jiang Xingliang1, Yang Shuang1, Xu Qingpeng1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. State Grid Chongqing Nan’an Power Supply Company Chongqing 400060 China
Abstract:Conductor corona, which would bring huge impacts, is one of the significant factors that should be taken into account during design and operation of transmission line. However, rains are momentous to the corona characteristics of conductors. Combined with 2D and 3D Finite Element Simulations, AC corona test has been carried out with water drops adhered to its surface inside a small corona cage, to figure out the corona characteristics of the conductor. The result shows that: the first and foremost, the corona inception voltage of conductor with water drops is much lower than that of conductor with few drops. Besides, according to the burst types of the water droplets, the first breakup voltage and the minimum micro-drops jetting voltage are used to represent the stability degree of the drops in the electric field. The first breakup voltage and the minimum micro-drops jetting voltage, which were measured under the circumstance of conductor with three water droplets attached to its surface, are lower than those of one-drop-condition. Next, water droplets are forced to vibrate by twice the frequency of electric field under the AC electric field. And different vibration position of the water droplet means different distortion of the electric field. In this case, intermittent-period of corona occurs. Last but not the least, the result of 3D finite element simulation shows that the maximum space field distribution and the volume of high field intensity region of three-drops-conduct are greater than that in one-drop-condition. Therefore, it is indicated that the three-drop-condition has a more severe impact on electric field distortion.
胡琴, 吴执, 舒立春, 蒋兴良, 杨爽, 徐清鹏. 交流电场下水滴对导线电晕特性的影响[J]. 电工技术学报, 2015, 30(18): 237-245.
Hu Qin, Wu Zhi, Shu Lichun, Jiang Xingliang, Yang Shuang, Xu Qingpeng. The Corona Characteristics of the Conductor Attached with Water Drops under AC Electrical Field. Transactions of China Electrotechnical Society, 2015, 30(18): 237-245.
[1] 尤少华, 刘云鹏, 律方成, 等. 电晕笼单根导线电晕损失等效修正系数试验研究[J].高电压技术, 2011, 37(10): 2410-2416. Lou Shaohua, Liu Yunpeng, Lü Fangcheng, et al. Test research on corona cage single conductor’s corona loss equivalent correction factor[J]. High Voltage Engineering, 2011, 37(10): 2410-2416. [2] 律方成, 尤少华, 刘云鹏, 等. 电晕笼中分裂导线交流电晕损失计算分析[J]. 高电压技术, 2011, 37(12): 2878-2884. Lü Fangcheng, You Shaohua, Liu Yunpeng, et al. Calculation and analysis of bundle conductors AC corona loss in corona cage[J]. High Voltage Engineering, 2011, 37(12): 2878-2884. [3] 万保权, 谢辉春, 樊亮, 等. 特高压变电站的电磁环境及电晕控制措施[J]. 高电压技术, 2010, 36(1): 109-115. Wan Baoquan, Xie Huichun, Fan Liang, et al. Electromagnetic environment and corona control measures of UHV substation: radio interference[J]. High Voltage Engineering, 2010, 36(1): 109-115. [4] 杨勇, 李立浧, 杜林, 等. 导线全面工频起晕电压测量新方法[J]. 高电压技术, 2012, 38(8): 1973-1980. Yang Yong, Li Licheng, Du Lin, et al. New method for measuring comprehensive voltage corona onset voltage of wire[J]. High Voltage Engineering, 2012, 38(8): 1973-1980. [5] Moreno V M, Gorur R S, Kroese A. Impact of corona on the long-term performance of nonceramic insulators[J]. IEEE Transaction on Dielectrics and Electrical Insulation, 2004, 11(5): 913-915. [6] 舒立春, 宫林, 蒋兴良, 等. 水滴或污秽对导线电晕放电起始特性的影响[J]. 高电压技术, 2008, 34(4): 633-637. Shu Lichun, Gong Lin, Jiang Xingliang, et al. Corona inception discharge characteristics of conductor adhered with water drops or pollution[J]. High Voltage Engineering, 2008, 34(4): 633-637. [7] Reddy Subba Basappa, Kumar U. Investigations on the corona performance of a ceramic disc insulators integrated with field reduction electrode[C]. IEEE Industry Applications Society Annual Meeting (IAS), 2010: 1-8. [8] Brahami M, Gourbi M, Tilmatine A, et al. Numerical analysis of the induced corona vibrations on high- voltage transmission lines affected by rainfall[J]. IEEE Transaction on Power Delivery, 2011, 26(2): 617-624. [9] Masanori Hara, Shinji Ishibe, Satoru Sumiyoshitani, et al. Electrical corona and specific charge on water drops from a cylindrical conductor with high dc voltage[J]. Journal of Electrostatics, 1980, 8(2): 239-270. [10] Masanori Hara, Masanori Akazaki. Onset mechanism and development of corona discharge on water drops dripping from a conductor under high direct voltage[J]. Journal of Electrostatics, 1981, 9(4): 339-353. [11] Luan Phan-Cong J, Pirotte P, Brunelle R, et al. A study of corona discharges at water drops over the freezing temperature range[J]. IEEE Transactions on Power Apparatus and Systems, 1974, PAS-93(2): 727-734. [12] 蒋兴良, 林锐, 胡琴 等. 直流正极性下绞线电晕起始特性及影响因素分析[J]. 中国电机工程学报, 2009, 29(34): 108-114. Jang Xingliang, Lin Rui, Hu Qin, et al. DC positive corona inception performances of stranded conductors and its affecting factors[J]. Proceedings of the CSEE, 2009, 29(34): 108-114. [13] Hu Qin, Shu Lichun, Jiang Xingliang, et al. Effects of air pressure and humidity on the corona onset voltage of bundle conductors[J]. IET Generation, Transmission & Distribution, 2011, 5(6): 621-629. [14] 陈澜, 陈方东, 赵雪松, 等. 大雨环境下雨滴对线路电晕特性的影响[J].高电压技术, 2012, 38(11): 2863-2868. Chen Lan, Cheng Fangdong, Zhao Xuesong, et al. Influence of rain drops on corona discharge in AC transmission lines under high rainy condition[J]. High Voltage Engineering, 2012, 38(11): 2863-2868. [15] 蒋兴良, 黄俊, 董冰冰, 等. 雾水电导率对输电线路交流电晕特性的影响[J]. 高电压技术, 2013, 39(3): 636-641. Jang Xingliang, Huang Jun, Dong Bingbing, et al. Influence of fog water conductivity on AC corona characteristics of transmission line[J]. High Voltage Engineering, 2013, 39(3): 636-641. [16] 林锐. 直流正极性下导线电晕放电特性及影响因素的研究[D]. 重庆: 重庆大学, 2009. [17] 胡琴. 低气压下输电线路导线电晕特性及影响因素的研究[D]. 重庆: 重庆大学, 2010. [18] Jong-Wook Ha. Breakup of a multiple emulsion drop in a uniform electric field[J]. Journal of Colloid and Interface Science, 1999, 213(1): 92-100. [19] 魏庆彩. 高频脉冲电场作用下液滴动力学研究[D]. 北京: 中国石油大学, 2010. [20] 李贤勇, 李露远, 张龙凡, 等. 浅析浅川效应的产生机理[J]. 科技创新导报, 2012(26): 72-75. Li Xianyong, Li Luyuan, Zhang Longfan, et al. Analysis of the effect of the mechanism Asakawa[J]. Science and Technology Innovation Herald, 2012(26): 72-75. [21] 龚海峰, 涂亚庆, 宋世远, 等. 高压电场作用下油中水滴变形动力学模型[J]. 石油学报(石油加工), 2009, 25(z1): 43-47. Gong Haifeng, Tu Yaqing, Song Shiyuan, et al. Deformation dynamicsmodel of water drop in oil under high electric field[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2009, 25(z1): 43-47. [22] 叶团结. 正弦交流电场中水滴变形破裂聚结微观特性研究[D]. 北京: 中国石油大学, 2010. [23] 李特. 交流电场强度对导线覆冰特性的影响研究[D]. 重庆: 重庆大学, 2012.