Research Progress of Corona Resistant Polyimide Films
Zhang Yiyi1, Zhao Ziwei1, Liu Jiefeng1, Zha Junwei2,3
1. Guangxi Power Transmission and Distribution Network Lightning Protection Engineering Technology Research Center Guangxi University Nanning 530004 China; 2. School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China; 3. Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 China
Abstract:With the development of power equipment in the direction of miniaturization and high frequency, the insulating medium in the power equipment needs to withstand higher frequency voltage levels. Polyimide is widely used as inter-turn insulating material in variable frequency motors, high-frequency transformers and wind power generation due to its excellent insulating properties, thermal stability and chemical resistance. However, due to its lack of corona resistance, the service life in high frequency environment is greatly shortened. Therefore, studying the corona aging mechanism of polyimide and the effect mechanism of material parameters on corona resistance is beneficial to the development of polyimide with higher corona resistance. First, in this paper, starting from the corona aging mechanism, the polyimide corona aging model is illustrated graphically, and the aging process is summarized into three aspects: particle impact, high temperature ablation and corrosion of active products. The energy characteristics of charged particles and the microstructure changes of polyimide are reviewed, and two corona aging models are introduced from the perspective of charge transport and energy conversion. The results show that: (1) The particles generated by corona discharge have great energy and can quickly destroy the molecular structure of polyimide, and the imide ring, ether bond and benzene ring change most obviously after corona aging. (2) The nanoparticles in the matrix can effectively weaken the energy of charged particles, reduce the damage of corona discharge to the polymer, and improve the corona resistance of the material. Secondly, the research progress of corona-resistant polyimide in recent years is analyzed from five aspects: dielectric properties, electrical conductivity properties, trap properties, interface properties and thermal conductivity. The following conclusions can be drawn: (1) The increase of the dielectric constant can improve the charge injection barrier, reduce the risk of charge injection and charge accumulation, and effectively improve the corona resistance performance, but an excessively large dielectric constant will also increase the dielectric loss and Adverse effects such as decreased dielectric strength; (2) The electrical conductivity can effectively change the partial discharge characteristics. Increasing the surface electrical conductivity of the film can improve the corona initiation discharge voltage under the AC electric field and reduce the possibility of local electric field distortion; (3) The introduction of nanoparticles can change the trap characteristics of the dielectric and affect the process of charge transport to improve the corona resistance. Shallow traps can speed up the rate of charge transfer and reduce the possibility of electric field distortion. Deep traps can reduce the frequent de-trapping-trapping process of charges and reduce the mechanical damage to the molecular chain. Therefore, it is very important to control the distribution of deep and shallow traps reasonably to improve the corona resistance performance; (4) The interface formed between the nanoparticles and the matrix can block the development of the corona discharge path, and finally form a "Z" discharge path, which prolongs the corona breakdown time in disguise; (5) Improves the thermal conductivity of the material , can reduce the thermal aging effect of the heat generated by the corona discharge on the polymer, reduce the risk of thermal breakdown, and improve the corona resistance life during normal operation. Finally, in view of the complex working conditions and insufficient production capacity of the current corona-resistant polyimide, the authors put forward his own suggestions from the aspects of mechanism research, production preparation and aging evaluation, aiming to realize the polyimide with high corona resistance performance.
[1] 梁得亮, 柳轶彬, 寇鹏, 等. 智能配电变压器发展趋势分析[J]. 电力系统自动化, 2020, 44(7): 1-14. Liang Deliang, Liu Yibin, Kou Peng, et al.Analysis of development trend for intelligent distribution transformer[J]. Automation of Electric Power Systems, 2020, 44(7): 1-14. [2] Zheng Jialin, Zhao Zhengming, Shi Bochen, et al.A discrete state event driven simulation based losses analysis for multi-terminal megawatt power electronic transformer[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 275-284. [3] 董国静, 刘涛, 李庆民. 脉冲电应力下空气-聚酰亚胺绝缘沿面放电过程数值模拟[J]. 电工技术学报, 2020, 35(9): 2006-2019. Dong Guojing, Liu Tao, Li Qingmin.Numerical simulation for surface discharge of air-polyimide insulation under pulsed electrical stress[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2006-2019. [4] Wan Baoquan, Dong Xiaodi, Yang Xing, et al.High strength, stable and self-healing copolyimide for defects induced by mechanical and electrical damages[J]. Journal of Materials Chemistry C, 2022, 10(31): 11307-11315. [5] 万宝全, 郑明胜, 查俊伟. 聚酰亚胺复合储能电介质材料研究进展[J]. 绝缘材料, 2021, 54(11): 23-33. Wan Baoquan, Zheng Mingsheng, Zha Junwei.Progress of polyimide-based composite dielectrics for energy storage applications[J]. Insulating Materials, 2021, 54(11): 23-33. [6] Meloni P A. High temperature polymeric materials containing corona resistant composite filler,methods relating thereto: US, US20040249041 A1[P].2004-12-09. [7] 李清玲, 刘存生, 翁梦蔓, 等. 耐电晕聚酰亚胺薄膜研究进展[J]. 绝缘材料, 2021, 54(8): 1-7. Li Qingling, Liu Cunsheng, Weng Mengman, et al.Research progress of corona resistant polyimide films[J]. Insulating Materials, 2021, 54(8): 1-7. [8] Luo Yang, Wu Guangning, Liu Jiwu, et al.Investigation of temperature effects on voltage endurance for polyimide/Al2O3 nanodielectrics[J]. IEEE transactions on dielectrics and electrical insulation, 2014, 21(4): 1824-1834. [9] Shi Hui, Liu Lizhu, Weng Ling, et al.Preparation and characterization of Polyimide/Al2O3 nanocomposite film with good corona resistance[J]. Polymer Composites, 2016, 37(3): 763-770. [10] 陈昊, 范勇, 周宏, 等. 耐电晕PI/无机纳米氧化物复合薄膜设计及性能[J]. 电机与控制学报, 2012, 16(5): 81-85. Chen Hao, Fan Yong, Zhou Hong, et al.Preparation and corona resistant properties of nano-inorganic oxide hybrid PI films[J]. Electric Machines and Control, 2012, 16(5): 81-85. [11] 尹毅, 肖登明, 屠德民. 空间电荷在评估绝缘聚合物电老化程度中的应用研究[J]. 中国电机工程学报, 2002, 22(1): 43-48. Yin Yi, Xiao Dengming, Tu Demin.An application of space charge in valuing the electric ageing degree of insulating polymer[J]. Proceedings of the CSEE, 2002, 22(1): 43-48. [12] 王霞, 孙晓彤, 刘全宇, 等. 基于空间电荷效应的绝缘老化寿命模型的研究进展[J]. 高电压技术, 2016, 42(3): 861-867. Wang Xia, Sun Xiaotong, Liu Quanyu, et al.Research development of aging models of insulation materials based on space charge effect[J]. High Voltage Engineering, 2016, 42(3): 861-867. [13] Zhou Liren, Wu Guangning, Gao Bo, et al.Study on charge transport mechanism and space charge characteristics of polyimide films[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1143-1149. [14] Tanaka T, Kozako M, Fuse N, et al.Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681. [15] Tanaka T, Ohki Y, Ochi M, et al.Enhanced partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 81-89. [16] 丁梓桉, 黄旭炜, 李庆民, 等. 两种功能化硅氧基聚酰亚胺薄膜的高频沿面放电寿命对比研究[J]. 电工技术学报, 2021, 36(13): 2719-2729. Ding Zian, Huang Xuwei, Li Qingmin, et al.A comparative study on the high frequency creeping discharge lifetime of two kinds of functionalized siloxy-containing polyimide films[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2719-2729. [17] 何恩广, 刘学忠. 纳米TiO2填料对变频电机耐电晕电磁线绝缘性能的影响[J]. 电工技术学报, 2003, 18(1): 72-76, 42. He Enguang, Liu Xuezhong.Influence of nano TiO2 filler on the corona-resistant magnetic wire insulation performance of inverter-fed motor[J]. Transactions of China Electrotechnical Society, 2003, 18(1): 72-76, 42. [18] 罗杨, 吴广宁, 刘继午, 等. 表面放电对聚酰亚胺薄膜材料的电气损伤特性研究[J]. 中国电机工程学报, 2013, 33(25): 187-195, 27. Luo Yang, Wu Guangning, Liu Jiwu, et al.Electrical damage characteristics of polyimide film caused by surface discharge[J]. Proceedings of the CSEE, 2013, 33(25): 187-195, 27. [19] Akram S, Gao Guoqiang, Liu Yang, et al.Degradation mechanism of Al2O3 nano filled polyimide film due to surface discharge under square impulse voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3341-3349. [20] 刘涛, 董国静, 李庆民, 等. 高频脉冲下电-热应力对聚酰亚胺绝缘寿命的耦合作用分析[J]. 高电压技术, 2020, 46(7): 2504-2510. Liu Tao, Dong Guojing, Li Qingmin, et al.Coupling effect of electrical and thermal stresses on insulation life of polyimide under high frequency impulses[J]. High Voltage Engineering, 2020, 46(7): 2504-2510. [21] Li Shengtao, Xie Dongri, Lei Qingquan.Understanding insulation failure of nanodielectrics: tailoring carrier energy[J]. High Voltage, 2020, 5(6): 643-649. [22] 李康, 郭润睿, Javed H, 等. 空气局部放电衍生物气体生成规律的研究[J]. 电工电能新技术, 2017, 36(8): 1-7. Li Kang, Guo Runrui, Javed H, et al.Study of air by-products formation characteristics under corona discharge[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(8): 1-7. [23] 廖瑞金, 伍飞飞, 刘康淋, 等. 棒-板电极直流负电晕放电脉冲过程中的电子特性研究[J]. 电工技术学报, 2015, 30(10): 319-329. Liao Ruijin, Wu Feifei, Liu Kanglin, et al.Simulation of characteristics of electrons during a pulse cycle in bar-plate DC negative corona discharge[J]. Transa-ctions of China Electrotechnical Society, 2015, 30(10): 319-329. [24] Chen Xiaoyue, Lan Lei, Lu Hailiang, et al.Numerical simulation of Trichel pulses of negative DC corona discharge based on a plasma chemical model[J]. Journal of Physics D: Applied Physics, 2017, 50(39): 395202. [25] 黄旭炜, 刘涛, 舒想, 等. 直流电晕放电作用下Kapton型聚酰亚胺裂解机理的ReaxFF分子动力学仿真[J]. 高电压技术, 2020, 46(1): 215-223. Huang Xuwei, Liu Tao, Shu Xiang, et al.ReaxFF-based molecular dynamics simulation on decomposition of Kapton polyimide under stress of DC corona discharge[J]. High Voltage Engineering, 2020, 46(1): 215-223. [26] 鲁杨飞, 李庆民, 刘涛, 等. 高频电压下表面电荷分布对沿面放电发展过程的影响[J]. 电工技术学报, 2018, 33(13): 3059-3070. Lu Yangfei, Li Qingmin, Liu Tao, et al.Effect of surface charge on the surface discharge evolution for polyimide under high frequency voltage[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3059-3070. [27] Chen M H, Yin J H, Bu W B, et al.Microstructure changes of polyimide/MMT-AlN composite hybrid films under corona aging[J]. Applied Surface Science, 2012, 263: 302-306. [28] 谢东日, 闵道敏, 黄印, 等. 纳米复合电介质击穿与耐电晕性的纳米掺杂效应[J]. 中国电机工程学报, 2018, 38(19): 5909-5918, 5949. Xie Dongri, Min Daomin, Huang Yin, et al.Nano-doping effects on dielectric breakdown and corona-resistance properties of polymeric nanocomposites[J]. Proceedings of the CSEE, 2018, 38(19): 5909-5918, 5949. [29] 田付强, 彭潇. 耐电晕耐电痕化绝缘材料研究进展[J]. 电工技术学报, 2017, 32(16): 3-13. Tian Fuqiang, Peng Xiao.The research progress of corona-resistant and tracking-resistant insulating materials[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 3-13. [30] 熊媛媛, 李志伟, 龚瑞. 硅橡胶电晕老化特性的微观机理研究[J]. 绝缘材料, 2022, 55(6): 64-70. Xiong Yuanyuan, Li Zhiwei, Gong Rui.Study on micro mechanism of corona ageing characteristics of silicone rubber[J]. Insulating Materials, 2022, 55(6): 64-70. [31] 杜伯学, 张莹, 孔晓晓, 等. 环氧树脂绝缘电树枝劣化研究进展[J]. 电工技术学报, 2022, 37(5): 1128-1135, 1157. Du Boxue, Zhang Ying, Kong Xiaoxiao, et al.Research progress on electrical tree in epoxy resin insulation[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1128-1135, 1157. [32] 查俊伟, 田娅娅, 刘雪洁, 等. 本征型耐高温聚酰亚胺储能电介质研究进展[J]. 高电压技术, 2021, 47(5): 1759-1770. Zha Junwei, Tian Yaya, Liu Xuejie, et al.Research progress of intrinsic high temperature resistant polyimide for energy storage dielectrics[J]. High Voltage Engineering, 2021, 47(5): 1759-1770. [33] 查俊伟, 党智敏. 聚酰亚胺/纳米ZnO耐电晕杂化膜的绝缘特性[J]. 中国电机工程学报, 2009, 29(34): 122-127. Zha Junwei, Dang Zhimin.Insulation properties of polyimide/nano-ZnO hybrid films with good corona resistance[J]. Proceedings of the CSEE, 2009, 29(34): 122-127. [34] Zha Junwei, Song Hongtao, Dang Zhimin, et al.Mechanism analysis of improved corona-resistant characteristic in polyimide/TiO2 nanohybrid films[J]. Applied Physics Letters, 2008, 93(19): 192911. [35] Ogbonna V E, Popoola A P I, Popoola O M, et al. A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement[J]. Polymer Bulletin, 2022, 79(1): 663-695. [36] Li Yanpeng, Yang Chen, Li Na, et al.Microstructure and electrical properties of polyimide-based composites reinforced by high-aspect-ratio titanium oxide nanowires[J]. Surface & Coatings Technology, 2019, 361: 425-431. [37] 孔宇楠, 殷景华, 铁雯鹭, 等. 聚酰亚胺/二氧化钛纳米复合薄膜制备与耐电晕性[J]. 无机材料学报, 2014, 29(1): 98-102. Kong Yunan, Yin Jinghua, Tie Wenlu, et al.Preparation and corona resistant of polyimide/TiO2 nanocomposite films[J]. Journal of Inorganic Materials, 2014, 29(1): 98-102. [38] 高波, 吴广宁, 曹开江, 等. 聚酰亚胺纳米复合薄膜的耐电晕机理[J]. 高电压技术, 2013, 39(12): 2882-2888. Gao Bo, Wu Guangning, Cao Kaijiang, et al.Corona-resistant mechanism of polyimide nano-composite film[J]. High Voltage Engineering, 2013, 39(12): 2882-2888. [39] 马莉莉, 马涛, 王宝祥, 等. 聚酰亚胺/改性六方氮化硼复合薄膜的耐电晕性能研究[J]. 绝缘材料, 2018, 51(4): 28-31. Ma Lili, Ma Tao, Wang Baoxiang, et al.Study on corona resistance properties of polyimide/f-BN composite films[J]. Insulating Materials, 2018, 51(4): 28-31. [40] Ma Lili, Lei Qingquan.Enhanced thermal and electrical insulation properties of polyimide films determined via a two-dimensional layered double hydroxide-potassium perfluorooctane sulfonate material[J]. Journal of Applied Polymer Science, 2018, 135(30): 46528. [41] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al.Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 1-12. [42] 黄旭炜, 舒想, 王健, 等. 含苯硫醚基团的低介损聚酰亚胺薄膜合成及其性能调控机制[J]. 中国电机工程学报, 2019, 39(15): 4623-4633. Huang Xuwei, Shu Xiang, Wang Jian, et al.Synthesis and performance modification mechanism of low dielectric loss polyimide films with phenyl thioether group[J]. Proceedings of the CSEE, 2019, 39(15): 4623-4633. [43] Lang Feng, Xiang Yu, Xiao Chunguang, et al.Preparation and properties of ODPA-ODA-SDA polyimide film and its application in corona resistance[J]. Progress in Organic Coatings, 2022, 166: 106777. [44] 陈刚, 黄正勇, 段瑜, 等. 基于不同油纸介电常数配比的油纸沿面放电仿真[J]. 电工技术学报, 2020, 35(S2): 620-628. Chen Gang, Huang Zhengyong, Duan Yu, et al.Simulation of surface discharge based on the different ratio of dielectric constants of oil and papers[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 620-628. [45] 张贵新, 李大雨, 王天宇. 交流电压下气固界面电荷积聚与放电特性研究进展[J]. 电工技术学报, 2022, 37(15): 3876-3887. Zhang Guixin, Li Dayu, Wang Tianyu.Progress in researching charge accumulation and discharge characteristics at gas-solid interface under AC voltage[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3876-3887. [46] Cai Ziming, Wang Xiaohui, Luo Bingcheng, et al.Hierarchical-structured dielectric permittivity and breakdown performances of polymer-ceramic nanocomposites[J]. Ceramics International, 2018, 44(1): 843-848. [47] 郭小霞, 吴广宁, 周凯, 等. 高压方波脉冲对聚酰亚胺薄膜表面形貌的影响[J]. 高电压技术, 2008, 34(8): 1656-1661. Guo Xiaoxia, Wu Guangning, Zhou Kai, et al.Influence of continuous square impulses voltage on surface shape of polyimide film[J]. High Voltage Engineering, 2008, 34(8): 1656-1661. [48] 吴广宁, 张兴涛, 杨雁, 等. 方波脉冲下不同纳米添加物对聚酰亚胺薄膜电气性能影响[J]. 高电压技术, 2017, 43(12): 3819-3826. Wu Guangning, Zhang Xingtao, Yang Yan, et al.Effects of different nano fillers on electrical properties of polyimide films under impulse voltage[J]. High Voltage Engineering, 2017, 43(12): 3819-3826. [49] 张兴涛, 吴广宁, 杨雁, 等. 聚酰亚胺纳米复合薄膜耐电晕机理研究[J]. 绝缘材料, 2016, 49(8): 17-20, 25. Zhang Xingtao, Wu Guangning, Yang Yan, et al.Research on corona resistance mechanism of polyimide nano composite films[J]. Insulating Materials, 2016, 49(8): 17-20, 25. [50] 雷清泉, 石林爽, 田付强, 等. 电晕老化前后100HN和100CR聚酰亚胺薄膜的电导电流特性实验研究[J]. 中国电机工程学报, 2010, 30(13): 109-114. Lei Qingquan, Shi Linshuang, Tian Fuqiang, et al.Experimental research on conduction current characteristics of 100HN and 100CR polyimide film before and after corona aging[J]. Proceedings of the CSEE, 2010, 30(13): 109-114. [51] 李鸿岩, 郭磊, 刘斌, 等. 聚酰亚胺/纳米Al2O3复合薄膜的介电性能[J]. 中国电机工程学报, 2006, 26(20): 166-170. Li Hongyan, Guo Lei, Liu Bin, et al.The dielectic properties of polyimide/nano-Al2O3 composites films[J]. Proceedings of the CSEE, 2006, 26(20): 166-170. [52] 范勇, 谭及兰, 谢艳红, 等. 纳米Zr-Ti-Al复合氧化物杂化PI薄膜的耐电晕性[J]. 哈尔滨理工大学学报, 2014, 19(4): 59-62. Fan Yong, Tan Jilan, Xie Yanhong, et al.Corona-resistance property of PI films doped with nano Zr-Ti-Al composite oxide[J]. Journal of Harbin University of Science and Technology, 2014, 19(4): 59-62. [53] 徐萌, 安钊, 王野, 等. 低温等离子体处理对聚酰亚胺纳米复合薄膜表面特性的影响[J]. 绝缘材料, 2021, 54(5): 47-53. Xu Meng, An Zhao, Wang Ye, et al.Effect of non-thermal plasma modification on surface characteristics of polyimide nanocomposites film[J]. Insulating Materials, 2021, 54(5): 47-53. [54] 郝璐, 李秀广, 张明虎, 等. 交直流电晕老化对室温硫化硅橡胶的性能影响研究[J]. 电瓷避雷器, 2018(6): 216-220. Hao Lu, Li Xiuguang, Zhang Minghu, et al.Study on the effect of AC and DC corona aging on the performance of room temperature vulcanized silicone rubber[J]. Insulators and Surge Arresters, 2018(6): 216-220. [55] 茹佳胜, 闵道敏, 张翀, 等. 直流电晕充电下环氧树脂表面电位衰减特性的研究[J]. 物理学报, 2016, 65(4): 277-285. Ru Jiasheng, Min Daomin, Zhang Chong, et al.Research on surface potential decay characteristics of epoxy resin charged by direct current corona[J]. Acta Physica Sinica, 2016, 65(4): 277-285. [56] 蒋兴良, 李源军. 相对湿度及雾水电导率对直流输电线路电晕特性的影响[J]. 电网技术, 2014, 38(3): 576-582. Jiang Xingliang, Li Yuanjun.Impact of relative humidity and water fog conductivity on corona characteristics of HVDC power transmission lines[J]. Power System Technology, 2014, 38(3): 576-582. [57] 何金良, 彭思敏, 周垚, 等. 聚合物纳米复合材料的界面特性[J]. 中国电机工程学报, 2016, 36(24): 6596-6605, 6911. He Jinliang, Peng Simin, Zhou Yao, et al.Interface properties of polymer nanocomposites[J]. Proceedings of the CSEE, 2016, 36(24): 6596-6605, 6911. [58] 冯宇, 殷景华, 陈明华, 等. 聚酰亚胺/TiO2纳米杂化薄膜耐电晕性能的研究[J]. 中国电机工程学报, 2013, 33(22): 142-147, 22. Feng Yu, Yin Jinghua, Chen Minghua, et al.Study on corona-resistance of the polyimide/nano-TiO2 hybrid films[J]. Proceedings of the CSEE, 2013, 33(22): 142-147, 22. [59] Lu Haowei, Lin Jiaqi, Yang Wenlong, et al.Effect of nano-TiO2 surface modification on polarization characteristics and corona aging performance of polyimide nano-composites[J]. Journal of Applied Polymer Science, 2017, 134(29): 45101. [60] 吴旭辉, 吴广宁, 杨雁, 等. 等离子体改性纳米粒子对聚酰亚胺复合薄膜陷阱特性影响[J]. 中国电机工程学报, 2018, 38(11): 3410-3418. Wu Xuhui, Wu Guangning, Yang Yan, et al.Influence of nanoparticle plasma modification on trap properties of polyimide composite films[J]. Proceedings of the CSEE, 2018, 38(11): 3410-3418. [61] 吴广宁, 杨雁, 钟鑫, 等. 变频电机绝缘材料关键性能及纳米改性研究进展[J]. 绝缘材料, 2016, 49(9): 21-27, 32. Wu Guangning, Yang Yan, Zhong Xin, et al.Research progress of key characteristics and nano-modification of insulating material for inverter-fed traction motor[J]. Insulating Materials, 2016, 49(9): 21-27, 32. [62] 罗杨, 吴广宁, 彭佳, 等. 聚合物纳米复合电介质的界面性能研究进展[J]. 高电压技术, 2012, 38(9): 2455-2464. Luo Yang, Wu Guangning, Peng Jia, et al.Research progress on interface properties of polymer nano-dielectrics[J]. High Voltage Engineering, 2012, 38(9): 2455-2464. [63] Li Jialong, Yin Jinghua, Liu Xiaoxu, et al.Effect of structure on electric properties of Polyimide/Al2O3 composites investigated by SAXS[C]//2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi'an, China, 2018: 960-965. [64] Zhao He, Yin Jinghua, Liu Xiaoxu, et al.Effect of 2-D BN on enhanced corona-resistant characteristic of PI/AlN+BN composite investigated by quasi-in-situ technology[J]. Polymer Testing, 2020, 84: 106394. [65] Lewis T J.Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 739-753. [66] 李天娇, 张博, 乌江. 基于陷阱分布的PI/ZnO复合薄膜介电特性[J]. 电工技术学报, 2022, 37(6): 1554-1563. Li Tianjiao, Zhang Bo, Wu Jiang.The dielectric properties of PI/ZnO composite films based on trap level distribution[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1554-1563. [67] 曹越. 聚酰亚胺膜的低温热解机理及其动力学的研究[D]. 大连: 大连理工大学, 2012. [68] 鲁旭, 韩帅, 李庆民, 等. 聚酰亚胺高温裂解机理的反应分子动力学模拟[J]. 电工技术学报, 2016, 31(12): 14-23. Lu Xu, Han Shuai, Li Qingmin, et al.Reactive molecular dynamics simulation of polyimide pyrolysis mechanism at high temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 14-23. [69] 李鸿岩, 王峰, 郭磊, 等. 变频电机的匝间绝缘电老化机理[J]. 绝缘材料, 2005, 38(2): 57-60. Li Hongyan, Wang Feng, Guo Lei, et al.Electric aging mechanism of wire insulation in inverter-fed motors[J]. Insulating Materials, 2005, 38(2): 57-60. [70] Su Jingang, Du Boxue, Li Jin, et al.Electrical tree degradation in high-voltage cable insulation: progress and challenges[J]. High Voltage, 2020, 5(4): 353-364. [71] 王一涵. 聚酰亚胺/氮化硼高导热复合绝缘材料关键物理性能与电热老化特性计算[D]. 济南: 山东大学, 2021. [72] Liu Xuejie, Zheng Mingsheng, Chen G, et al.High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties[J]. Energy & Environmental Science, 2022, 15(1): 56-81. [73] Liu Xiaoxu, Ji Tianyi, Li Na, et al.Preparation of polyimide composites reinforced with oxygen doped boron nitride nano-sheet as multifunctional materials[J]. Materials & Design, 2019, 180: 107963. [74] 刘松, 田付强, 王毅, 等. 聚酰亚胺基BN微纳米复合材料的电气绝缘性能研究[J]. 绝缘材料, 2017, 50(2): 24-29, 34. Liu Song, Tian Fuqiang, Wang Yi, et al.Study on insulating properties of polyimide-based BN micro-nano composites[J]. Insulating Materials, 2017, 50(2): 24-29, 34. [75] 夏旭. 零维二维纳米材料协同改性聚酰亚胺复合薄膜微结构与电学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. [76] 柳璐, 程浩忠, 吴耀武, 等. 面向高比例可再生能源的输电网规划方法研究进展与展望[J]. 电力系统自动化, 2021, 45(13): 176-183. Liu Lu, Cheng Haozhong, Wu Yaowu, et al.Research progress and prospects of transmission expansion planning method for high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(13): 176-183.