Reactive Molecular Dynamics Simulation of Polyimide Pyrolysis Mechanism at High Temperature
Lu Xu1, Han Shuai2, Li Qingmin1, Huang Xuwei3, Wang Xuelei2, Wang Gaoyong4
1. State Key Lab of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. School of Electrical Engineering Shandong University Jinan 250061 China; 3. Beijing Key Lab of HV and EMC North China Electric Power University Beijing 102206 China; 4. Smart Grid Research Institute of State-Grid Company Beijing 102200 China
Abstract:Polyimide, due to its excellent insulation properties, has been widely used in solid state transformers, frequency conversion motors and other electrical devices, whereas the cleavage of chemical bonds under high temperature is the main reason for the insulation failure. In this paper molecular simulation method based on reactive force field (ReaxFF) is introduced to carry out reactive molecular dynamics simulation on PI molecular models and to investigate its pyrolysis mechanism at high temperature in the atomic level. Polyimide with 4 monomers is taken as the example to simulate and analyze the initial pyrolysis mechanism, micro dynamic reaction paths during the whole process, the formation mechanism of main products. The microscopic insulation failure mechanism under high temperature is then obtained. The results indicate that initial breaking bond is the C-N bond on the imide ring, and the cleavage of C-N bond connecting two benzene rings is the main reason for PI main chain scission. CO2 and CN are the major products of PI pyrolysis, and their formations are both associated with the cleavage of C-N bond on the imide ring; the reduced degree of polymerization of PI main chain, CO2 and other small molecules generated by the scission of imide ring jointly lead to the insulation failure of PI at high temperature.
鲁, 旭, 韩, 帅, 李庆民, 黄旭炜, 王学磊, 王高勇. 聚酰亚胺高温裂解机理的反应分子动力学模拟[J]. 电工技术学报, 2016, 31(12): 14-23.
Lu Xu, Han Shuai, Li Qingmin, Huang Xuwei, Wang Xuelei, Wang Gaoyong. Reactive Molecular Dynamics Simulation of Polyimide Pyrolysis Mechanism at High Temperature. Transactions of China Electrotechnical Society, 2016, 31(12): 14-23.
[1] 章程, 邵涛, 于洋, 等. 纳秒脉冲介质阻挡放电特性及其聚合物材料表面改性[J]. 电工技术学报, 2010, 25(5): 31-37. Zhang Cheng, Shao Tao, Yu Yang, et al. Hydrophilic improvement of polymers treated by homogeneous nanosecond pulse dielectric barrier discharge in atmospheric air[J]. Transactions of China Electro- technical Society, 2010, 25(5): 31-37. [2] Shimokawa T, Hamaguchi Y, Kakuta Y, et al. Effect of isothermal aging on ultimate strength of high- temperature composite materials for SST structures[J]. Journal of Composite Materials, 1999, 33(12): 1104- 1118. [3] 周力任, 吴广宁, 高波, 等. 聚酰亚胺薄膜中电荷输运机理和空间电荷特性[J]. 电工技术学报, 2009, 24(12): 6-11. Zhou Liren, Wu Guangning, Gao Bo, et a1. Charge transport mechanism and space charge characteristic in polyimide films[J]. Transactions of China Electrotechnical Society, 2009, 24(12): 6-11. [4] 罗杨, 吴广宁, 曹开江, 等. 聚酰亚胺分子降解的微观动力学模拟[J]. 高电压技术, 2012, 38(10): 2707-2713. Luo Yang, Wu Guangning, Cao Kaijiang, et al. Dynamic simulation for pyrolysis micro-mechanism of polyimide[J]. High Voltage Engineering, 2012, 38(10): 2707-2713. [5] 黄晶, 周宁, 马建伟, 等. 基于故障树分析的电力变压器可靠性跟踪方法[J]. 电力系统保护与控制, 2010, 40(19): 72-77. Huang Jing, Zhou Ning, Ma Jianwei, et al. Reliability tracing technique for power transformers using the fault tree analysis method[J]. Power System Pro- tection and Control, 2010, 40(19): 72-77. [6] 任静, 黄家栋. 基于免疫RBF神经网络的变压器故障诊断[J]. 电力系统保护与控制, 2010, 38(11): 6-9. Ren Jing, Huang Jiadong. Transformer fault diagnosis based on immune RBF neural network[J]. Power System Protection and Control, 2010, 38(11): 6-9. [7] 武中利, 杨建, 朱永利, 等. 基于粗糙集理论和支持向量机的变压器故障诊断[J]. 电力系统保护与控制, 2010, 38(18): 80-83. Wu Zhongli, Yang Jian, Zhu Yongli, et al. Power transformer fault diagnosis based on rough set and support vector mach[J]. Power System Protection and Control, 2010, 38(18): 80-83. [8] Hatori H, Yamada Y, Shiraishi M, et al. The mechanism of polyimide pyrolysis in the early stage[J]. Carbon, 1996, 34(2): 201-208. [9] Goodenough J B, Hamnett A, Kennedy B J, et al. XPS investigation of platinized carbon electrodes for the direct methanol air fuel cell[J]. Electrochimica Acta, 1987, 32(8): 1233-1238. [10] Pramoda K P, Chung T S, Liu S L, et al. Characteri- zation and thermal degradation of polyimide and polyamide liquid crystalline polymers[J]. Polymer Degradation and Stability, 2000, 67(2): 365-374. [11] Scheraga H A, Khalili M, Liwo A. Protein-folding dynamics: overview of molecular simulation techni- ques[J]. Annual Review of Physical Chemistry, 2007, 58(1): 57-83. [12] Miller J A, Pilling M J, Troe J. Unravelling combustion mechanisms through a quantitative understanding of elementary reactions[J]. Pro- ceedings of the Combustion Institute, 2005, 30(1): 43-88. [13] Johnston H S, Parr C. Activation energies from bond energies. I. Hydrogen transfer reactions[J]. Journal of the American Chemical Society, 1963, 85(17): 2544- 2551. [14] Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[J]. Physical Review B, 1990, 42(15): 9458. [15] 廖瑞金, 朱孟兆, 周欣, 等. 油纸复合介质中水分子扩散行为的分子动力学模拟[J]. 物理化学学报, 2011, 27(4): 815-824. Liao Ruijin, Zhu Mengzhao, Zhou Xin, et al. Molecular dynamics simulation od the diffusion behavior of water molecules in oil and cellulose composite media[J]. Acta Physico-Chimica Sinica, 2011, 27(4): 815-824. [16] 廖瑞金, 杨丽君, 郑含博, 等. 电力变压器油纸绝缘热老化研究综述[J]. 电工技术学报, 2012, 27(5): 1-12. Liao Ruijin, Yang Lijun, Zheng Hanbo, et al. Reviews on oil-paper insulation thermal aging in power transformers[J]. Transactions of China Elect- rotechnical Society, 2012, 27(5): 1-12. [17] Chenoweth K, van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. [18] Chenoweth K, Cheung S, Van Duin A C T, et al. Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reac- tive force field[J]. Journal of the American Chemical Society, 2005, 127(19): 7192-7202. [19] Liu X, Li X, Liu J, et al. Study of high density poly- ethylene (HDPE) pyrolysis with reactive molecular dynamics[J]. Polymer Degradation and Stability, 2014, 104(1): 62-70. [20] Nomura K, Kalia R K, Nakano A, et al. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation[J]. Physical Review Letters, 2007, 99(14): 148303. [21] Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys[J]. Materials Transactions-JIM, 2000, 41(11): 1372-1378. [22] Goddard Lii W A, Mueller J E, Chenoweth K, et al. ReaxFF Monte Carlo reactive dynamics: Application to resolving the partial occupations of the M1 phase of the MoVNbTeO catalyst[J]. Catalysis Today, 2010, 157(1): 71-76. [23] Chenoweth K, van Duin A C T, Goddard W A. The ReaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: application to the Mo 3 VO x catalyst[J]. Angewandte Chemie, 2009, 121(41): 7766-7770. [24] Wang Q D, Wang J B, Li J Q, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane[J]. Combustion and Flame, 2011, 158(2): 217-226.