Microscopic Dynamic Formation Mechanism and Influencing Factors of AC Vacuum Arc
Li Jing1,Cao Yundong1,Hou Chunguang1,Bo Kai2,Yu Longbin3
1.Institute of Electrical Apparatus Technology and Application Shenyang University of Technology Shenyang 110870 China 2.Military Apparatus Research Institute Harbin Institute of Technology Harbin 150001 China 3.The Equipment State Evaluation Center Liaoning Electric Power Research Institute of State Grid Shenyang 110006 China
Abstract:In order to reveal the microcosmic dynamic vacuum arc formation mechanism and its influencing factors,the kinetic theory of the gases model are used to study the formation process of the arc between the vacuum circuit breaker contacts.The drift-diffusionequations of electron and ion,the collision equations of microscopic particles,and the Poisson equations of the electric field are involved in the model.The simplified vacuum circuit breaker model is then established,in which the distance between the contacts is 10 mm and the voltages between contacts are AC 12 kV and 400 V with power frequency separately.By the simulation,the formation processes of the vacuum arc and the sheath with power frequency,and its corresponding time-dependent microscopic parameters such as the electron density,average electron energy,and collision energy loss distribution are acquired.The effects on the formation of the vacuum arc produced by electron mobility,metal vapour pressure and initial electron density are also calculated.The simulation results indicate that the sheath formed by different particle velocities is the basis of arc formation.The energy of the electron is axially concentrated by the affection of high voltage and strong electric field.The mobility of electron and the vapor pressure of metal have a great effect on the formation process of the vacuum arc.However,the initial electron density shows ignorable influence on the vacuum arc formation process.
[1] Wang L,Qian Z,Huang X,et al.Three-dimensional time-dependent model and simulation of high-current vacuum arc in commercial axial magnetic fields vacuum interrupters[J].IEEE Transactions on Plasma Science,2013,41(8):2015-2021. [2] Mackow A,Kizilcay M.Simulation of secondary arc on 400 kV transmission system consisting of overhead line section and power cable section[R].Wroclaw:Poland.Proceedings of the 12th International Conference on Environment and Electrical Engineering,2013. [3] 王季梅.真空开关理论及其应用[M].西安:西安交通大学出版社,1986. [4] 张冠生.电器理论基础[M].北京:机械工业出版社,1989. [5] Boxman R L.Early history of vacuum arc deposition[J].IEEE Transactions on Plasma Science,2001,29(5):759-761. [6] Steffens H D,Babiak Z,Wewel M.Recent developments in arc spraying[J].IEEE Transactions on Plasma Science,1990,18(6):974-979. [7] Giuliani L,Xaubet M,Grondona D,et al.Electrical studies and plasma characterization of an atmospheric pressure plasma jet operated at low frequency[J].Physics of Plasmas,2013,20(6):063505. [8] Huang R,Fukanuma H,Uesugi Y,et al.Comparisons of two models for the simulation of a DC arc plasma torch[J].Journal of Thermal Spray Technology,2013,22(2-3):183-191. [9] 郑仕健,丁芳,谢新华,等.高气压直流辉光CH4/H2等离子体的气相过程诊断[J].物理学报,2013,62(16):1652041. Zheng Shijian,Ding Fang,Xie Xinhua,et al.A diagnosis of gas-phase processes in a high pressure DC CH4/H2 plasma[J].Acta Physica Sinica,2013,62(16):1652041. [10]王景,武建文.中频真空电弧的等离子体特性[J].中国电机工程学报,2011,31(36):145-152. Wang Jing,Wu Jianwen.Plasma characteristics of intermediate-frequency vacuum arc[J].Proceedings of the CSEE,2011,31(36):145-152. [11]彭庆军,司马文霞,杨庆,等.初始电子浓度对空气中针板间隙正极性流注放电的影响[J].高电压技术,2013,39(1):37-43. Peng Qingjun,Sima Wenxia,Yang Qing,et al.Influence of initial electron concentration on positive streamer discharge in pin-plate air gap[J].High Voltage Engineering,2013,39(1):37-41. [12]王伟宗,荣命哲,Murphy A B,等.平衡态电弧等离子体统计热力学属性的计算[J].西安交通大学学报,2011,45(4):86-92. Wang Weizong,Rong Mingzhe,Murphy A B,et al.Calculation analysis on statistic thermodynamic properties of thermal arc plasmas[J].Journal of Xi’an Jiaotong University,2011,45(4):86-92. [13]马强,荣命哲,Murphy A B,等.考虑器壁侵蚀影响的低压断路器电弧运动特性仿真及实验[J].电工技术学报,2009,24(12):74-81. Ma Qiang,Rong Mingzhe,Murphy A B,et al.Simulation and experiment on airarc characteristics in low-voltage circuit breaker considering wall ablation[J].Transactions of China Electrotechnical Society,2009,24(12):74-81. [14]Van Lanen E P A,Smeets R P P,Popov M,et al.Current-zero characteristics of a vacuum circuit breaker at short-circuit current interruption[C].Discharges and Electrical Insulation in Vacuum,Matsue,Japan,2006. [15]Wu Y,Rong M,Sun Z,et al.Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device[J].Journal of Physics D:Applied Physics,2007,40(3):795-802. [16]Takahashi S,Arail K,Morimiya O,et al.A PIC-MCC simulation of the high-votage interruption ability of a vacuum interrupter[J].IEEE Transactions on Plasma Science,2007,35(4):912-919. [17]李静,曹云东,王尔智,等.断路器短间隙气体击穿过程的粒子模拟[J].中国电机工程学报,2010,30(16):125-130. Li Jing,Cao Yundong,Wang Erzhi,et al.Particle-in-cell simulation of gas disruption in short gap of circuit breaker[J].Proceedings of the CSEE,2010,30(16):125-130. [18]李静,曹云东,邹积岩,等.直流气体放电过程中的离子分子碰撞模型[J].高电压技术,2009,35(7):1677-1682. Li Jing,Cao Yundong,Zou Jiyan,et al.Ion-molecule collision modeling in direct current gas discharge[J].High Voltage Engineering,2009,35(7):1677-1682. [19]王立军,贾申利,史宗谦,等.开距对不同状态下真空电弧特性影响的仿真分析[J].中国电机工程学报,2008,28(7):154-160. Wang Lijun,Jia Shenli,Shi Zongqian,et al.Simulation analysis of influence of electrode separations on vacuum ares characteristics under different states[J].Proceedings of the CSEE,2008,28(7):154-160. [20]Shmelev D L,Barengolts S A.Kinetic modeling of initiation of explosion center on cathode under dense plasma[J].IEEE Transactions on Plasma Science,2013,41(8):1959-1963. [21]Shmelev D L,Delachaux T,Schade E.Kinetic numerical simulation of the cathode attachment zone of constricted high-current vacuum arcs[J].IEEE Transactions on Plasma Science,2013,41(2):384-390. [22]Hertel M,Spille-Kohoff A,Fussel U,et al.Numerical simulation of droplet detachment in pulsed gas-metal arc welding including the influence of metal vapour[J].Journal of Physics D:Applied Physics,2013,46(22):224003-224013. [23]Donko Z.Particle simulation methods for studies of low-pressure plasma sources[J].Plasma Sources Science and Technology,2011,20(2):024001-024011. [24]王立军,胡丽兰,周鑫,等.大尺寸电极条件下大电流真空电弧特性的仿真.电工技术学报,2013,28(2):163-170. Wang Lijun,Hu Lilan,Zhou Xin,et al.Simulation of high-current vacuum arc characteristics with big-size electrode conditions[J].Transactions of China Electrotechnical Society,2013,28(2):163-170. [25]Surendra M.Radiofrequency discharge benchmark model comparison[J].Plasma Sources Science Technology,1995,4(1):56-73. [26]Philips D D,Davis R W,Graves E R.Inelastic collision cross sections for 14-MeV neutrons[J].Physical Review,1952,88(3):600-602. [27]Hayashi M.Recommended value of transport cross sections for elastic collision and total collision cross section for electrons in atomic and molecular gases[J].Nayoya Institute of Technology,1981. [28]Scheibner K F,Hazi A U,Henry R J.Electron-impact excitation cross sections for transitions in atomic copper[J].Physical Review,1987,35(4):4869-4872. [29]Shima K.Mn and Cu K-shell ionization cross sections by slow electron impact[J].Physics Letters A,1980,77(4):237-239. [30]Inokuti M,Bederson B.Cross-section Data[M].California:Academic Press,1994. [31]Tkachev A N,Fedenev A A,Yakovlenko S I.Townsend coefficient,escape curve,and fraction of runaway electrons in copper vapor 2007[J].Laser Physics,2007,17(6):775-781. [32]Nanbu K,Kitatani Y.An ion-neutral species collision model for particle simulation of glow discharge[J].Journal of Physics D:Applied physics,1995,28:324-330. [33]薄凯,李静,曹云东.工频真空电弧微观动态形成机理仿真[C].第十届沈阳科学学术年会论文集,沈阳,2013. [34]林莘.现代高压电器技术[M].2版.北京:机械工业出版社,2011:152-153.