Micro-Control Simulation of Electro-Thermal Dissociation Characteristics of Carbon Nanotubes/Epoxy Resin Composites
Ni Xiaoru1, Wang Jian1, Wang Jingrui1, Li Qingmin1, Han Zhiyun2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. School of Electrical Engineering Shandong University Jinan 250061 China
Abstract:The aging and dissociation of epoxy resin is one of the important factors affecting the safe operation of DC GIL equipment. Adding a certain mass fraction of nanoparticles can effectively regulate its thermal performance. Four crosslinked epoxy resin models have been established in this paper, including pure epoxy resin, non-capped, half-capped, and fully capped carbon nanotube/epoxy composite media models. Based on the reaction force field ReaxFF, reaction molecular dynamics simulations of electron-thermal dissociation were performed on the four media models using the LAMMPS software. The results show that during the dissociation process, the initial dissociation temperature of the carbon nanotube/epoxy composite medium model is increased, the number of normalized molecules is reduced by about 15%, and the number and type of small molecule products produced also are decreased. During the electron-thermal dissociation process, the temperature dominates, thermal dissociation mainly occurs. The presence of electrical stress causes polar molecules and groups to move in the direction of the electric field. Carbon nanotubes improve the thermal stability of the epoxy resin to a certain extent, and alleviate the electro-thermal aging process. The effect of the non-capped and half-capped carbon nanotube composite medium models is more significant, which can provide an auxiliary design method for the micro-control of epoxy composite media.
倪潇茹, 王健, 王靖瑞, 李庆民, 韩智云. 碳纳米管对环氧树脂复合介质电-热裂解特性的微观调控模拟[J]. 电工技术学报, 2018, 33(22): 5159-5167.
Ni Xiaoru, Wang Jian, Wang Jingrui, Li Qingmin, Han Zhiyun. Micro-Control Simulation of Electro-Thermal Dissociation Characteristics of Carbon Nanotubes/Epoxy Resin Composites. Transactions of China Electrotechnical Society, 2018, 33(22): 5159-5167.
[1] 何金良. 构建地下能源综合通道的设想[J]. 南方电网技术, 2016, 10(3): 66-70. He Jinliang.Ideas on building underground energy complex passage[J]. Southern Power System Tech- nology, 2016, 10(3): 66-70. [2] 王健, 李伯涛, 李庆民, 等. 直流GIL中线形金属微粒对柱式绝缘子表面电荷积聚的影响[J]. 电工技术学报, 2016, 31(15): 213-222. Wang Jian, Li Botao, Li Qingmin, et al.Impact of linear metal particle on surface charge accumulation of post insulator within DC GIL[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 213-222. [3] 王健, 李庆民, 李伯涛, 等. 直流应力下电极表面覆膜对金属微粒启举的影响机理研究[J]. 电工技术学报, 2015, 30(5): 119-127. Wang Jian, Li Qingmin, Li Botao, et al.Mechanism analysis of the electrode-coating's impact to the particle-lifting under DC voltage[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 119-127. [4] 贾志杰, 李建明, 李佳, 等. 500kV直流GIL支撑绝缘子的电场优化[J]. 高压电器, 2010, 46(6): 18-21. Jia Zhijie, Li Jianming, Li Jia, et al.Electric field optimization of the supporting insulator of 500kV DC GIL[J]. High Voltage Apparatus, 2010, 46(6): 18-21. [5] Li P, Li J Z, Qin Y F, et al.Wormholes effect in flashover process of alumina filled epoxy resin surfaces in SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 2142-2147. [6] Douar M A, Beroual A, Souche X.Degradation of various polymeric materials in clean and salt fog conditions: measurements of AC flashover voltage and assessment of surface damages[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 391-399. [7] 周文俊, 乔胜亚, 李丽, 等. GIS中盆式绝缘子沿面放电的新特征气体CS2[J]. 高电压技术, 2015, 41(3): 848-856. Zhou Wenjun, Qiao Shengya, Li Li, et al.Creeping discharge monitoring of epoxy spacers in GIS using a new target gas CS2[J]. High Voltage Engineering, 2015, 41(3): 848-856. [8] Cherney E A.Nanodielectrics applications-today and tomorrow[J]. IEEE Electrical Insulation Magazine, 2013, 29(6): 59-65. [9] 王有元, 王施又, 陆国俊, 等. 纳米AlN改性对干式变压器环氧树脂绝缘性能的影响[J]. 电工技术学报, 2017, 32(7): 174-180. Wang Youyuan, Wang Shiyou, Lu Guojun, et al.Influence of nano-AlN modification on the insulation properties of epoxy resin of dry-type transformers[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 174-180. [10] Butzloff P, D'Souza N A, Golden T D, et al. Epoxy+ montmorillonite nanocomposite: effect of com- position on reaction kinetics[J]. Polymer Engineering & Science, 2001, 41(10): 1794-1802. [11] Chatterjee A, Islam M S, Chatterjee A, et al.Fabrication and characterization of TiO2-epoxy nanocomposite[J]. Materials Science & Engineering A, 2008, 487(1): 574-585. [12] 田继斌, 梁胜彪, 隋刚, 等. 羧基化多壁碳纳米管对T-1000碳纤维/环氧树脂复合材料性能的影响[J]. 玻璃钢复合材料, 2010(1): 36-39. Tian Jibin, Liang Shengbiao, Sui Gang, et al.Effect of carboxyl functionalized multiwalled carbon nanotubes on properties of T-1000 carbon fiber/ epoxy composites[J]. Fiber Reinforced Plastics/ composites, 2010(1): 36-39. [13] Tu Youping, Zhou Fuwen, Cheng Yi, et al.The control mechanism of micron and nano SiO2/epoxy composite coating on surface charge in epoxy resin[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1275-1284. [14] 李庆民, 黄旭炜, 刘涛, 等. 分子模拟技术在高电压绝缘领域的应用进展[J]. 电工技术学报, 2016, 31(12): 1-13. Li Qingmin, Huang Xuwei, Liu Tao, et al.Application progresses of molecular simulation methodology in the area of high voltage insulation[J]. Transactions of China Electrotechnical Society,2016, 31(12): 1-13. [15] 刁智俊, 赵跃民, 陈博, 等. 印刷电路板中环氧树脂热解的ReaxFF反应动力学模拟[J]. 化学学报, 2012, 70(19): 2037-2044. Diao Zhijun, Zhao Yuemin, Chen Bo, et al.Thermal decomposition of epoxy resin contained in printed circuit boards from reactive dynamics using the ReaxFF reactive force field[J]. Journal of the Chinese Chemical Society, 2012, 70(19): 2037-2044. [16] Zhou Yihui, Wu Wenbiao, Qiu Keqiang.Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology[J]. Waste Management, 2011, 31(12): 2569-2576. [17] Chiang H L, Lo C C, Ma S Y.Characteristics of exhaust gas, liquid products, and residues of printed circuit boards using the pyrolysis process[J]. Environmental Science & Pollution Research, 2010, 17(3): 624. [18] Zhang Yiming, Li Jialin, Wang Jianpeng, et al.Research on epoxy resin decomposition under microwave heating by using ReaxFF molecular dynamics simulations[J]. RSC Advances, 2014, 33(4): 17083-17090. [19] Wu Chaofu, Xu Weijian.Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin[J]. Polymer, 2007, 48(19): 5802-5812. [20] Wu C, Xu W.Atomistic molecular modelling of crosslinked epoxy resin[J]. Polymer, 2006, 47(16): 6004-6009. [21] Yu X, Zhang J, Choi W, et al.Cap formation engineering: from opened C60 to single-walled carbon nanotubes[J]. Nano Letters, 2010, 10(9): 3343-3349. [22] Weismiller M R, Duin A C T V, Lee J, et al. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion[J]. Journal of Physical Chemistry A, 2010, 114(17): 5485-5492. [23] 鲁旭, 韩帅, 李庆民, 等. 聚酰亚胺高温裂解机理的反应分子动力学模拟[J]. 电工技术学报, 2016, 31(12): 14-23. Lu Xu, Han Shuai, Li Qingmin, et al.Reactive molecular dynamics simulation of polyimide pyrolysis mechanism at high temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 14-23. [24] Diao Z, Zhao Y, Chen B, et al.ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound[J]. Journal of Analytical & Applied Pyrolysis, 2013, 104(10): 618-624. [25] 黄旭炜, 鲁旭, 韩帅, 等. 风机叶片用PU改性乙烯基树脂热解过程的ReaxFF反应分子动力学模拟[J].高分子学报, 2015(10): 1133-1142. Huang Xuwei, Lu Xu, Han Shuai, et al.Reax FF-based reactive molecular dynamics simulation of pyrolysis of polyurethane/pinyl ester resin used for wind turbine blades[J]. Acta Polymerica Sinica, 2015(10): 1133-1142. [26] 张明艳, 李明川, 周诚智, 等. 蒙脱土和碳纳米管共掺改性环氧树脂复合材料的力学性能和热性能[J]. 高分子材料科学与工程, 2015, 31(6): 116-121. Zhang Mingyan, Li Mingchuan, Zhou Chengzhi, et al.Effect of montmorillonite and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Polymer Materials Science & Engineering, 2015, 31(6): 116-121. [27] Wang Fang, Li Shuqing, Wang Jingwen, et al.Effect of functionalized multi-walled carbon nanotubes on the curing behavior and thermal stability of epoxy resin[J]. High Performance Polymers, 2012, 24(2): 97-104. [28] Guan Jie, Li Yingshun, Lu Maixi.Product characterization of waste printed circuit board by pyrolysis[J]. Journal of Analytical & Applied Pyrolysis, 2008, 83(2): 185-189. [29] Gojny F H, Schulte K.Functionalization effect on the thermo-mechanical behavior of multi-wall carbon nanotube/epoxy-composites[J]. Composites Science & Technology, 2004, 64(15): 2303-2308. [30] Hill D E, Lin Y, Rao A M, et al.Functionalization of carbon nanotubes with polystyrene[J]. Macro- molecules, 2002, 35(25): 319-334. [31] Kuan Chenfeng, Chen Weijen, Li Yiluen, et al.Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol-gel method[J]. Journal of Physics & Chemistry of Solids, 2010, 71(4): 539-543.