Abstract:The cable terminal is an important component of electric locomotive high voltage cable, but it is also the weak link of the high voltage cable insulation system. In the operation of cable terminals, the “three junction points” (the outer semiconductor layer, the stress control pipe, and the main insulation layer) produce a concentrated electric field, leading to a partial discharge phenomenon, which seriously affects the safety and reliability of EMU operation. In order to solve effectively the problems of uneven electric field distribution and excessively high local field intensity at the end of vehicle cable, this paper studied the dispersion characteristics of core-shell ZnO@PS particles and the influence of doping on the insulation performance of EPDM rubber, explored the influence of ZnO@PS particles on the microscopic and dielectric properties of composite dielectric materials, and built the corona discharge model of needle-plate electrode. The effect of nano-particles with different doping ratios on the corona resistance of modified ethylene propylene rubber was analyzed. Firstly, ZnO@PS composite particles were prepared by polymerization modification method. Then, the morphology, structure, and dispersion of the samples were characterized by transmission electron microscopy, particle size analysis, infrared spectroscopy, and thermogravimetric analysis. Secondly, with ZnO@PS /EPDM composite as the research object, the conductivity, dielectric properties and corona resistance with the doping ratio of nanoparticles werestudied. Moreover, the needle-plate electrode model was built to explore the corona discharge of composite dielectric material under anuneven electric field. The research results provide a reference for preparing cable terminal functional materials. The microscopic characteristics of ZnO@PS composite particles were analyzed. TEM results show that the long chains of PVA/PS adhere to the ZnO surface in an irregular form, and the film-forming performance of PVA is remarkable. The particle size analysis shows that when PVA/ZnO=6.32(wt/wt) %, the average particle size is 132.42 nm, the PDI coefficient is 0.17, and the dispersion performance of composite particles is better. FTIR results show that PVA/PS modification has anoticeable effect on the removal of hydroxyl on the surface of nano-ZnO, and hydrogen bonds are formed at the interface of inorganic/organic molecules. TGA and DSC results show that the mass percentage of the nano-composite particles increases and the maximum mass loss fraction is 47.208 %. The conductivity, dielectric properties, and corona discharge resistance characteristics of ZnO@PS/EPDM composites were studied. After doping nano-composite particles, the ZnO@PS/EPDM materials show nonlinear characteristics with the electric field change. With the increase of doping concentration, the nonlinear characteristics become more apparent, the nonlinear coefficient increases, and the initial field strength in the nonlinear region decreases.Compared with the unmodified EPDM, it is found that the corona resistance of the nanoparticle-modified EPDM composite is improved under the uneven electric field. When the doping amount of ZnO@PS particles is 5 %, the corona voltage increases by 95.5 % compared with the unmodified EPDM, and the UV photon count rate shows an apparent downward trend. This paper can lay a theoretical foundation for applying nonlinear voltage equalization materials in cable terminals and provide a reference for preparing cable terminal functional materials.
刘凯, 张鹏鹏, 高波, 杨雁, 吴广宁. ZnO@PS粒子分散特性及改性乙丙橡胶绝缘性能研究[J]. 电工技术学报, 2023, 38(8): 2265-2276.
Liu Kai, Zhang Pengpeng, Gao Bo, Yang Yan, Wu Guangning. Research on the Dispersion Characteristics of ZnO@PS Particles and the Insulation Characteristics of Modified Ethylene Propylene Rubber. Transactions of China Electrotechnical Society, 2023, 38(8): 2265-2276.
[1] 白龙雷, 周利军, 邢立勐, 等. 高寒环境下低温对乙丙橡胶电缆终端界面放电特性的影响[J]. 电工技术学报, 2020, 35(3): 646-658. Bai Longlei, Zhou Lijun, Xing Limeng, et al.Effect of low temperature on interface discharge characteri- stics of ethylene-propylene rubber cable termination in high-cold environment[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 646-658. [2] 周利军, 刘源, 白龙雷, 等. 高寒地区车载柔性电缆终端的局部放电特性与破坏机理[J]. 高电压技术, 2019, 45(1): 189-195. Zhou Lijun, Liu Yuan, Bai Longlei, et al.Partial discharge characteristics and breakdown mechanism for locomotive cable flexible terminal in alpine area[J]. High Voltage Engineering, 2019, 45(1): 189-195. [3] 王子康, 周凯, 朱光亚, 等. 冷热循环对电缆附件界面压力及带材材料特性的影响[J]. 高电压技术, 2022, 48(6): 2198-2207. Wang Zikang, Zhou Kai, Zhu Guangya, et al.Effect of thermal cycling on the interface pressure of cable accessories and their strips' material properties[J]. High Voltage Engineering, 2022, 48(6): 2198-2207. [4] 迟庆国, 崔爽, 张天栋, 等. 碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J]. 电工技术学报, 2020, 35(20): 4405-4414. Chi Qingguo, Cui Shuang, Zhang Tiandong, et al.Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4405-4414. [5] 凡朋, 周登波, 严海健, 等. 纳米二氧化硅掺杂低密度聚乙烯微观特性的分子模拟[J]. 高电压技术, 2017, 43(9): 2875-2880. Fan Peng, Zhou Dengbo, Yan Haijian, et al.Micro- cosmic properties of LDPE/SiO2 nano-composite by molecular simulation[J]. High Voltage Engineering, 2017, 43(9): 2875-2880. [6] 沈晓帆, 王晓娜, 俞能晟, 等. 聚吡咯@二氧化锰/碳纳米管薄膜电极的制备及在高性能锌离子电池中的应用[J]. 物理化学学报, 2022, 38(5): 20060529. Shen Xiaofan, Wang Xiaona, Yu Nengsheng, et al.A polypyrrole-coated MnO2/carbon nanotube film cathode for rechargeable aqueous Zn-ion batteries Chinese full text[J]. Acta Physico-Chimica Sinica, 2022, 38(5): 20060529. [7] Ghaffari M, Naderi R, Ehsani M.Effect of silane as surface modifier and coupling agent on rheological and protective performance of epoxy/nano-glassflake coating systems[J]. Iranian Polymer Journal, 2014, 23(7): 559-567. [8] 杨国清, 黎洋, 王德意, 等. 超支化聚酯改性纳米SiO2/环氧树脂的介电特性[J]. 电工技术学报, 2019, 34(5): 1106-1115. Yang Guoqing, Li Yang, Wang Deyi, et al.Effect of hyperbranched polyester grafting nanosilica on dielectric properties of epoxy resin[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1106-1115. [9] 张博, 乌江, 郑晓泉. 改性聚酰亚胺表面稳定性与真空直流沿面闪络抑制方法研究[J]. 电工技术学报, 2019, 34(13): 2846-2853. Zhang Bo, Wu Jiang, Zheng Xiaoquan.Study of the surface stability of modified polyimide and the suppression method of surface flashover under DC voltage in vacuum[J]. Transactions of China Electro- technical Society, 2019, 34(13): 2846-2853. [10] 董明, 杨凯歌, 马馨逸, 等. 纳米改性变压器油中载流子输运特性分析[J]. 电工技术学报, 2020, 35(21): 4597-4608. Dong Ming, Yang Kaige, Ma Xinyi, et al.Analysis of charge-carrier transport characteristics of transformer oil-based nanofluids[J]. Transactions of China Elec- trotechnical Society, 2020, 35(21): 4597-4608. [11] Alswieleh A M, Beagan A M, Alsheheri B M, et al.Hybrid mesoporous silica nanoparticles grafted with 2-(tert-butylamino) ethyl methacrylate-b-poly (ethylene glycol) methyl ether methacrylate diblock brushes as drug nanocarrier[J]. Molecules (Basel, Switzerland), 2020, 25(1): 195. [12] Demydova K, Horechyy A, Meier-Haaсk J, et al.Hybrid organic-inorganic materials on the basis of acrylic monomers and TEOS prepared by simu- ltaneous UV-curing and Sol-gel process[J].Journal of Polymer Research, 2020, 27(4): 1-9. [13] Chen Hengzhi, Guo Zhengkui, Jia Lingling.Preparation and surface modification of highly dispersed nano-ZnO with stearic acid activated by N, N'-carbonyldiimidazole[J]. Materials Letters, 2012, 82: 167-170. [14] Huang Xingyi, Jiang Pingkai, Yin Yi.Nanoparticle surface modification induced space charge suppression in linear low density polyethylene[J]. Applied Physics Letters, 2009, 95(24): 242905. [15] Zhang Ling, Zhou Yuanxiang, Huang Meng, et al.Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocom- posites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 424-433. [16] 韩宝忠, 郭文敏, 李忠华. 碳化硅/硅橡胶复合材料的非线性电导特性[J]. 功能材料, 2008, 39(9): 1490-1493. Han Baozhong, Guo Wenmin, Li Zhonghua.Non- linear conductivity properties of silicon carbind/ silicon rubber composites[J]. Journal of Functional Materials, 2008, 39(9): 1490-1493. [17] Guo Wenmin, Wang Yang, Zhang Rong, et al.Research on application of nonlinear insulation com- posites in cable termination[C]//IEEE Proceedings of 2011 6th International Forum on Strategic Techno- logy, Harbin, 2011: 133-136. [18] 韩澎, 郑明胜, 查俊伟, 等. MWCNTs改善WS2/三元乙丙橡胶复合材料的非线性电导特性与热导性能[J]. 复合材料学报, 2019, 36(3): 748-755. Han Peng, Zheng Mingsheng, Zha Junwei, et al.Improved nonlinear conductivity and thermal con- ductivity of WS2/ethylene propylene diene monomer composites with MWCNTs[J]. Acta Materiae Com- positae Sinica, 2019, 36(3): 748-755. [19] 刘晨阳, 郑晓泉, 别成亮. 掺杂ZnO/环氧树脂基体的制备及其非线性电导改性研究[J]. 电工技术学报, 2016, 31(12): 24-30. Liu Chenyang, Zheng Xiaoquan, Bie Chengliang.Research of preparation and non-linear conductivity modification of doped ZnO/epoxide resin material[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 24-30. [20] Christen T, Donzel L, Greuter F.Nonlinear resistive electric field grading part 1: theory and simulation[J]. IEEE Electrical Insulation Magazine, 2010, 26(6): 47-59. [21] 谢竟成, 胡军, 何金良, 等. 压敏陶瓷-硅橡胶复合材料的非线性压敏介电特性[J]. 高电压技术, 2015, 41(2): 446-452. Xie Jingcheng, Hu Jun, He Jinliang, et al.Nonlinear dielectric and conductivity properties of ZnO varistor/ silicone rubber polymer composites[J]. High Voltage Engineering, 2015, 41(2): 446-452. [22] 郭玥. 纳米ZnO改性环氧树脂复合材料绝缘特性研究[D]. 西安: 西安理工大学, 2017. [23] 周利军, 朱少波, 白龙雷, 等. 低温下应力管界面对车载电缆终端局部放电的影响[J]. 高电压技术, 2019, 45(4): 1266-1273. Zhou Lijun, Zhu Shaobo, Bai Longlei, et al.Influence of stress tubes interface on partial discharge of vehicle cable terminal at low temperatures[J]. High Voltage Engineering, 2019, 45(4): 1266-1273. [24] Zhang Jianjun, Gao Ge, Zhang Ming, et al.ZnO/PS core-shell hybrid microspheres prepared with minie- mulsion polymerization[J]. Journal of Colloid and Interface Science, 2006, 301(1): 78-84. [25] Liu Peng.Facile preparation of monodispersed core/ shell zinc oxide@polystyrene (ZnO@PS) nanoparticles viasoapless seeded microemulsion polymerization[J]. Colloids and Surfaces A: Physicochemical and Engin- eering Aspects, 2006, 291(1/2/3): 155-161. [26] 刘贺千, 池明赫, 陈庆国, 等. 纳米氧化铝改性绝缘纸板的介电特性分析[J]. 中国电机工程学报, 2017, 37(14): 4246-4253, 4304. Liu Heqian, Chi Minghe, Chen Qingguo, et al.Analysis of dielectric characteristics of nano-Al2O3 modified insulation pressboard[J]. Proceedings of the CSEE, 2017, 37(14): 4246-4253, 4304. [27] Ohshima H.Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in nano-, bio-, and environmental sciences[M]. Hoboken, New Jersey: John Wiley & Sons, 2012. [28] Lewis T J.Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2004, 11(5): 739-753. [29] 李光茂, 周鸿铃, 杨森, 等. 高频电场对高温硫化硅橡胶介电性能的影响[J]. 高压电器, 2022, 58(6): 40-49. Li Guangmao, Zhou Hongling, Yang Sen, et al.Influence of high frequency electric field on dielectric performance of high temperature vulcanizing silicone rubber[J]. High Voltage Apparatus, 2022, 58(6): 40-49.