Overview of Energy Storage System Monitoring and Management Based on Structural-Functional Integration
Zhang Xian1,2, Huang Feipeng1,2, Luo Yaohui1,2, Xu Zhicheng1,2, Jiang Kai3
1. State Key Laboratory of Intelligent Power Distribution Equipment and System Hebei University of Technology Tianjin 300401 China; 2. Hebei Key Laboratory of Equipment and Technology Demonstration of Flexible DC Transmission Hebei University of Technology Tianjin 300401 China; 3. School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract:Novel energy storage systems represented by lithium-ion batteries, which is characterized by high energy utilization efficiency, cost-effectiveness, and environmental sustainability, have occupied a dominant position in the fields of new energy vehicles and energy storage industries, However, with the increasing requirement for capacity and safety performance, energy storage systems are facing with many challenges, including limited specific capacity of electrode materials, insufficient reliability of electrolytes, and low efficiency in operation and maintenance management. Structural-functional integrated technology has been introduced into the energy storage system to achieve high energy density, safe operation, and intelligent management simultaneously. Therefore, this paper reviewsstructural-functional integrated technology from three aspects of material, individual battery cell, and energy storage system. Firstly, the paper introduces basic structural material of structural-functional integrated battery (referred to as structural battery) and reviews the development of critical components in structural batteries through the lens of intrinsic material properties and multi-scale micro-structural design. In addition, the coupling mechanisms between mechanical integrity and electrochemical functionality in energy storage systems are elucidated, with particular emphasis on the regulatory role of composite material architectures. Structural battery systems have two fundamental advantages. On the one hand, the structural battery enables direct integration into load-bearing components, such as electric vehicle chassis and aerospace fuselages, transcending the conventional paradigm of decoupled energy-storage and structural-support functionalities. On the other hand, the multifunctional electrolyte demonstrates concurrent thermal stability and mechanical robustness, addressing thermal runaway and mechanical deformation through a unified material solution simultaneously. Secondly, the paper concentrates on critical physical signals in electrochemical energy storage systems and analyzes in-situ monitoring technology and integrated sensor design architectures for an individual battery cell. Three principal sensing technologies—temperature, strain/stress, and optical sensor—are evaluated by comparing technological difficulty, identification accuracy, monitoring range, and cost. At the same time, the application domains of sensing technologies are analyzed in real energy storage monitoring scenarios. Furthermore, sensor selection strategy encompassing both quantity and modality is investigated to optimize system configurations while preventing data overload and computational resource wastage. This paper presents an intelligent energy storage management system that integrates advanced sensing technologies, signal processing technology, and data fusion algorithms. The core of the systems is to use multi-dimensional sensors to monitor internal signals within the energy storage systems. The multi-dimensional sensing signals are transmitted to a data processing unit, where high-precision state estimation and safety early-warning algorithms are developed based on these signals. As a result, the high reliability and safety of the energy storage systems can be ensured. Finally, the key issues that need to be addressed in the development of structural-functional integrated technology have been summarized from the aspects of novel material development, intelligent monitoring of conditions, and operation and maintenance management. It is expected that structural-functional integrated technology will find broader applications in the future and promote the development of novel energy storage systems.
张献, 黄飞鹏, 罗耀辉, 徐志成, 蒋凯. 结构功能一体化储能系统监测与管理综述[J]. 电工技术学报, 2025, 40(24): 8136-8155.
Zhang Xian, Huang Feipeng, Luo Yaohui, Xu Zhicheng, Jiang Kai. Overview of Energy Storage System Monitoring and Management Based on Structural-Functional Integration. Transactions of China Electrotechnical Society, 2025, 40(24): 8136-8155.
[1] 科技前沿. 欧盟电池研发路线图[EB/OL]. [2024- 01-26]. http://www.casisd.cn/zkcg/ydkb/kjqykb/2023/kjqykb2311/202401/t20240126_6972315.html. [2] 国务院部门文件. 工业和信息化部等六部门关于推动能源电子产业发展的指导意见[EB/OL].[2023- 01-03]. https://www.gov.cn/zhengce/zhengceku/2023-01/17/content_5737584.htm. [3] CNESA. 储能产业趋势[EB/OL]. [2024-11-15]. http://www.esresearch.com.cn/report/category_id=21. [4] 申江卫, 岩川, 刘永刚, 等. 基于数据挖掘与大数据分析的电池故障诊断与异常检测[J]. 电工技术学报, 2024, 39(24): 7979-7994. Shen Jiangwei, Yan Chuan, Liu Yonggang, et al.Battery fault diagnosis and anomaly detection based on data mining and big data analysis[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7979-7994. [5] Storage Wiki.BESS Failure Incident Database[EB/OL]. [2023-12-31].https://storagewiki.epri.com/index.php/BESS_Failure_Incident_Database. [6] 蒋民强, 胡东源, 董晨昊, 等. 典型结构功能一体化复合材料的设计与制备技术[J]. 复合材料学报, 2024, 41(9): 4457-4477. Jiang Minqiang, Hu Dongyuan, Dong Chenhao, et al.Design and fabrication techniques for typical structural- functional integrated composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4457-4477. [7] 张卫红, 周涵, 李韶英, 等. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428. Zhang Weihong, Zhou Han, Li Shaoying, et al.Material- structure integrated design for high-performance aerospace thin-walled component[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 627428. [8] 邢丽英. 结构功能一体化复合材料技术[M]. 北京: 航空工业出版社, 2017. [9] 张峻滔, 王亚震, 李晖, 等. 碳纤维复合材料结构锂离子电池研究综述[J]. 复合材料学报, 2023, 40(3): 1263-1273. Zhang Juntao, Wang Yazhen, Li Hui, et al.Study review on structure lithium-ion batteries of carbon fiber rein-forced composites[J]. Acta Materiae Com- positae Sinica, 2023, 40(3): 1263-1273. [10] Hopkins B J, Long J W, Rolison D R, et al.High- performance structural batteries[J]. Joule, 2020, 4(11): 2240-2243. [11] Thomas J P, Qidwai M A.Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia, 2004, 52(8): 2155-2164. [12] Asp L E, Greenhalgh E S.Structural power com- posites[J]. Composites Science and Technology, 2014, 101: 41-61. [13] Carlstedt D, Asp L E.Performance analysis frame- work for structural battery composites in electric vehicles[J]. Composites Part B: Engineering, 2020, 186: 107822. [14] Johannisson W, Ihrner N, Zenkert D, et al.Multi- functional performance of a carbon fiber UD lamina electrode for structural batteries[J]. Composites Science and Technology, 2018, 168: 81-87. [15] Moyer K, Meng Chuanzhe, Marshall B, et al.Carbon fiber reinforced structural lithium-ion battery composite: multifunctional power integration for CubeSats[J]. Energy Storage Materials, 2020, 24: 676-681. [16] Ladpli P, Nardari R, Kopsaftopoulos F, et al.Multi- functional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources, 2019, 414: 517-529. [17] 王朝阳, 杨向涛, 徐祥博, 等. 结构储能碳纤维复合材料设计及其在无人机上的应用[J]. 航空制造技术, 2020, 63(18): 84-90, 101. Wang Chaoyang, Yang Xiangtao, Xu Xiangbo, et al.Structural energy storage carbon fiber composite design and application in drone[J]. Aeronautical Manufacturing Technology, 2020, 63(18): 84-90, 101. [18] Kjell M H, Jacques E, Zenkert D, et al.PAN-based car-bon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of the Electro- chemical Society, 2011, 158(12): A1455. [19] Li Huagen, Wang Shubin, Feng Mengjie, et al.MOF- derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries[J]. Chinese Chemical Letters, 2019, 30(2): 529-532. [20] Zhang Rui, Chen Xiang, Shen Xin, et al.Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. [21] Wang Fangxue, Han Qigang, Yi Zheng, et al.Synthesis and performances of carbon fiber@Co3O4 based on metal organic frameworks as anode materials for structural lithium-ion battery[J]. Journal of Electroanalytical Chemistry, 2017, 807: 196-202. [22] Han Qigang, Zhang Xu, Zhang Wenqiang, et al.Preparation of multifunctional P-CF@SnO2-MOF composite used as structural anode materials[J]. Journal of Electro-analytical Chemistry, 2020, 871: 114355. [23] Wu Hongyuan, Wei Lu, Li Wei, et al.Highly conductive carbon/carbon composites as advanced multifunctional anode materials for structural lithium- ion batteries[J]. Advanced Functional Materials, 2024, 34(40): 2403729. [24] Yin Sha, Hong Zhiguo, Hu Zihan, et al.Fabrication and multiphysics modeling of modified carbon fiber as structural anodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 476: 228532. [25] Li Huagen, Wang Shubin, Feng Mengjie, et al.Self- assembly and performances of wrinkled rGO@carbon fiber with embedded SnO2 nanoparticles as anode materials for structural lithium-ion battery[J]. Journal of Materials Science, 2018, 53(16): 11607-11619. [26] Han Qigang, Li Xiang, Wang Fangxue, et al.Carbon fiber@pore-ZnO composite as anode materials for structural lithium-ion batteries[J]. Journal of Electro- analytical Chemistry, 2019, 833: 39-46. [27] Martha S K, Kiggans J O, Nanda J, et al.Advanced lithium battery cathodes using dispersed carbon fibers as the current collector[J]. Journal of the Electro- chemical Society, 2011, 158(9): A1060. [28] Ellis B L, Lee K T, Nazar L F.Positive electrode materials for Li-ion and Li-batteries[J]. Chemistry of Materials, 2010, 22(3): 691-714. [29] Entwistle J, Ge Ruihuan, Pardikar K, et al.Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: a critical review[J]. Renewable and Sustainable Energy Reviews, 2022, 166: 112624. [30] Hagberg J, Maples H A, Alvim K S P, et al. Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries[J]. Composites Science and Technology, 2018, 162: 235-243. [31] Bao Yinhua, Hong Guangqi, Chen Ya, et al.Customized kirigami electrodes for flexible and deformable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 780-788. [32] Yang Xiaofei, Sun Qian, Zhao Changtai, et al.Self- healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 22: 194-199. [33] Park H W, Jang M S, Choi J S, et al.Characteristics of woven carbon fabric current collector electrodes for structural battery[J]. Composite Structures, 2021, 256: 112999. [34] Yücel Y D, Adolfsson E, Dykhoff H, et al.Powder- impregnated carbon fibers with lithium iron phosphate as positive electrodes in structural batteries[J]. Composites Science and Technology, 2023, 241: 110153. [35] Sanchez J S, Xu J, Xia Zhenyuan, et al.Electro- phoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries[J]. Composites Science and Technology, 2021, 208: 108768. [36] Shen Xiaoyu, Yu Hailong, Ben Liubin, et al.High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder com- posite[J]. Journal of Energy Chemistry, 2024, 90: 133-143. [37] Ye Jinrui, Ji Xiaolong, Liu Zhendong, et al.Carbon fiber reinforced structural battery composites: Pro- gress and challenges toward industrial application[J]. Composites Part B: Engineering, 2024, 277: 111411. [38] López-Aranguren P, Berti N, Dao A H, et al.An all- solid-state metal hydride-sulfur lithium-ion battery[J]. Journal of Power Sources, 2017, 357: 56-60. [39] Tang Shuai, Guo Wei, Fu Yongzhu.Composite polymer electrolytes: advances in composite polymer electrolytes for lithium batteries and beyond (adv. energy mater. 2/2021)[J]. Advanced Energy Materials, 2021, 11(2): 2170009. [40] He Kangqiang, Chen Chenglin, Fan Rong, et al.Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries[J]. Composites Science and Technology, 2019, 175: 28-34. [41] Jin Yingmin, Zong Xin, Zhang Xuebai, et al.Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 49: 433-444. [42] Yu Yalin, Zhang Boming, Feng Mengjie, et al.Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites[J]. Composites Science and Technology, 2017, 147: 62-70. [43] Schneider L M, Ihrner N, Zenkert D, et al.Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(6): 4362-4369. [44] Schulze M W, McIntosh L D, Hillmyer M A, et al. High-modulus, high-conductivity nanostructured poly- mer electrolyte membranes via polymerization- induced phase separation[J]. Nano Letters, 2014, 14(1): 122-126. [45] Wan Jiayu, Xie Jin, Kong Xian, et al.Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711. [46] Zhang Jinmeng, Yan Jianlong, Zhao Yanan, et al.High-strength and machinable load-bearing integrated electrochemical capacitors based on polymeric solid electrolyte[J]. Nature Communications, 2023, 14(1): 64. [47] Ihrner N, Johannisson W, Sieland F, et al.Structural lithium ion battery electrolytes via reaction induced phase-separation[J]. Journal of Materials Chemistry A, 2017, 5(48): 25652-25659. [48] Xiong Rui, Sun Xinjie, Meng Xiangfeng, et al.Advancing fault diagnosis in next-generation smart battery with multidimensional sensors[J]. Applied Energy, 2024, 364: 123202. [49] 马敬轩, 赖铱麟, 吕娜伟, 等. 锂离子电池智能传感监测及预警技术[J]. 电工技术学报, 2025, 40(3): 941-963. Ma Jingxuan, Lai Yilin, Lü Nawei, et al.Lithium-ion battery intelligent sensing monitoring and early warning technology[J]. Transactions of China Elec- trotechnical Society, 2025, 40(3): 941-963. [50] Raijmakers L H J, Danilov D L, Eichel R A, et al. A review on various temperature-indication methods for Li-ion batteries[J]. Applied Energy, 2019, 240: 918-945. [51] Wang Shixue, Li Kaixiang, Tian Yuan, et al.Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithium-ion power battery[J]. Applied Thermal Engineering, 2019, 152: 204-214. [52] Mutyala M S K, Zhao Jingzhou, Li Jianyang, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermo- couples[J]. Journal of Power Sources, 2014, 260: 43-49. [53] Xu Chengshan, Feng Xuning, Huang Wensheng, et al.Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume acce- lerating rate calorimetry[J]. Journal of Energy Storage, 2020, 31: 101670. [54] Martiny N, Rheinfeld A, Geder J, et al.Development of an all kapton-based thin-film thermocouple matrix for in situ temperature measurement in a lithium ion pouch cell[J]. IEEE Sensors Journal, 2014, 14(10): 3377-3384. [55] Li Bing, Jones C M, Adams T E, et al.Sensor based In-operando lithium-ion battery monitoring in dynamic service environment[J]. Journal of Power Sources, 2021, 486: 229349. [56] Li Bing, Parekh M H, Adams R A, et al.Lithium-ion battery thermal safety by early internal detection, prediction and prevention[J]. Scientific Reports, 2019, 9(1): 13255. [57] Zhu Shengxin, Han Jindong, An Hongyan, et al.A novel embedded method for in situ measuring internal multi-point temperatures of lithium ion batteries[J]. Journal of Power Sources, 2020, 456: 227981. [58] Amici J, Asinari P, Ayerbe E, et al.A roadmap for trans-forming research to invent the batteries of the future de-signed within the European large scale research initiative BATTERY 2030+[J]. Advanced Energy Materials, 2022, 12(17): . [59] Yang Le, Li Na, Hu Likun, et al.Internal field study of 21700 battery based on long-life embedded wireless temperature sensor[J]. Acta Mechanica Sinica, 2021, 37(6): 895-901. [60] Chen Zhiwen, Lin Jiawei, Zhu Cuicui, et al.Detection of jelly roll pressure evolution in large-format Li-ion batteries via in situ thin film flexible pressure sensors[J]. Journal of Power Sources, 2023, 566: 232960. [61] Choi W, Seo Y, Yoo K, et al.Carbon nanotube-based strain sensor for excessive swelling detection of lithium-ion battery[C]//2019 20th International Con- ference on Solid-State Sensors, Actuators and Micro- systems & Eurosensors XXXIII (TRANSDUCERS & EUROSEN-SORS XXXIII), Berlin, Germany, 2019: 2356-2359. [62] Peng Xiaoli, Han Jiang, Zhang Qian, et al.Real-time mechanical and thermal monitoring of lithium batteries with PVDF-TrFE thin films integrated within the battery[J]. Sensors and Actuators A: Physical, 2022, 338: 113484. [63] Zhu Shengxin, Yang Le, Wen Jiawei, et al.In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors[J]. Journal of Power Sources, 2021, 516: 230669. [64] Huang Jiaqiang, Han Xile, Liu Fu, et al.Monitoring battery electrolyte chemistry via In-operando tilted fiber Bragg grating sensors[J]. Energy & Environ- mental Science, 2021, 14(12): 6464-6475. [65] Nascimento M, Ferreira M S, Pinto J L.Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: a comparative study[J]. Measurement, 2017, 111: 260-263. [66] Fleming J, Amietszajew T, McTurk E, et al. Deve- lopment and evaluation of in situ instrumentation for cylindrical Li-ion cells using fibre optic sensors[J]. HardwareX, 2018, 3: 100-109. [67] Li Yiding, Wang Wenwei, Yang Xiaoguang, et al.A smart Li-ion battery with self-sensing capabilities for enhanced life and safety[J]. Journal of Power Sources, 2022, 546: 231705. [68] Yu Yifei, Vincent T, Sansom J, et al.Distributed internal thermal monitoring of lithium ion batteries with fibre sensors[J]. Journal of Energy Storage, 2022, 50: 104291. [69] Yu Yifei, Vergori E, Maddar F, et al.Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre[J]. Journal of Power Sources, 2022, 521: 230957. [70] Wang Xiuwu, Zhu Jiangong, Wei Xuezhe, et al.Non- damaged lithium-ion batteries integrated functional electrode for operando temperature sensing[J]. Energy Storage Materials, 2024, 65: 103160. [71] Nascimento M, Novais S, Ding M S, et al.Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries[J]. Journal of Power Sources, 2019, 410: 1-9. [72] Mei Wenxin, Liu Zhi, Wang Chengdong, et al.operando monitoring of thermal runaway in com- mercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1): 5251. [73] 王淇, 马恩典, 彭云尔, 等. 基于线圈参数优化的预埋传感器动态无线供电最大功率传输技术[J]. 电工技术学报, 2025, 40(2): 367-375. Wang Qi, Ma Endian, Peng Yuner, et al.dynamic wire-less power transfer technology for maximum power transmission of pre-embedded sensors based on optimization of coil parameters[J]. Transactions of China Electrotechnical Society, 2025, 40(2): 367-375. [74] Kim Y J, Gu H M, Kim C S, et al.High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator[J]. Energy, 2018, 162: 526-533. [75] 何海龙, 李祎, 陈赦, 等. 面向电力装备自供电传感的微纳能源收集技术[J]. 高电压技术, 2024, 50(8): 3387-3402. He Hailong, Li Yi, Chen She, et al.Micro energy harvesting technologies for self-powered sensing of electrical equipment[J]. High Voltage Engineering, 2024, 50(8): 3387-3402. [76] Monagle D, Ponce E A, Leeb S B.Rule the joule: an energy management design guide for self-powered sensors[J]. IEEE Sensors Journal, 2024, 24(1): 6-15. [77] Lu Yao, Wang Xiaodan, Mao Shuoyuan, et al.Smart batteries enabled by implanted flexible sensors[J]. Energy & Environmental Science, 2023, 16(6): 2448-2463. [78] 张继元, 孙建旸, 王卫宏. 基于储能云架构的能源工业互联网平台研究与应用[J]. 电气技术, 2022, 23(8): 68-74. Zhang Jiyuan, Sun Jianyang, Wang Weihong.Research and application of the energy industry internet plat- form based on energy storage cloud architecture[J]. Electrical Engineering, 2022, 23(8): 68-74. [79] 李卓昊, 石琼林, 王康丽, 等. 锂离子电池健康状态估计方法研究现状与展望[J]. 电力系统自动化, 2024, 48(20): 109-129. Li Zhuohao, Shi Qionglin, Wang Kangli, et al.Research status and prospects of state health esti- mation methods for lithium-ion batteries[J]. Auto- mation of Electric Power Systems, 2024, 48(20): 109-129. [80] 郭向伟, 王晨, 钱伟, 等. 电池储能系统均衡方法研究综述[J]. 电工技术学报, 2024, 39(13): 4204-4225. Guo Xiangwei, Wang Chen, Qian Wei, et al.A review of equalization methods for battery energy storage system[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 4204-4225. [81] Schmitt J, Kraft B, Schmidt J P, et al.Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. Journal of Power Sources, 2020, 478: 228661. [82] Mao Shuoyuan, Han Xuebing, Lu Yao, et al.Multi sensor fusion methods for state of charge estimation of smart lithium-ion batteries[J]. Journal of Energy Storage, 2023, 72: 108736. [83] Ee Y J, Tey K S, Lim K S, et al.Lithium-ion battery state of charge (SoC) estimation with non-electrical parameter using uniform fiber Bragg grating (FBG)[J]. Journal of Energy Storage, 2021, 40: 102704. [84] Ganguli A, Saha B, Raghavan A, et al.Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341: 474-482. [85] Rente B, Fabian M, Vidakovic M, et al.Lithium-ion battery state-of-charge estimator based on FBG-based strain sensor and employing machine learning[J]. IEEE Sensors Journal, 2021, 21(2): 1453-1460. [86] 李奎杰, 周开运, 詹锐烽, 等. 储能锂离子电池热失控早期主动安全预警技术[J]. 电气工程学报, 2024, 19(4): 48-61. Li Kuijie, Zhou Kaiyun, Zhan Ruifeng, et al.Early active safety warning technology for thermal runaway of energy storage lithium-ion batteries[J]. Journal of Electrical Engineering, 2024, 19(4): 48-61. [87] 杨梦洁, 杨爱军, 叶奕君, 等. 基于气体分析的锂离子电池热失控早期预警研究进展[J]. 电工技术学报, 2023, 38(17): 4507-4538. Yang Mengjie, Yang Aijun, Ye Yijun, et al.Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4507-4538. [88] Su Anyu, Mao Shuoyuan, Lu Languang, et al.Implanted potential sensing separator enables smart battery internal state monitor and safety alert[J]. eTransportation, 2024, 21: 100339. [89] Zhang Yajun, Wang Hewu, Wang Yan, et al.Thermal abusive experimental research on the large-format lithium-ion battery using a buried dual-sensor[J]. Journal of Energy Storage, 2021, 33: 102156. [90] Koch S, Birke K, Kuhn R.Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2): 16. [91] Lü Siqi, Li Na, Sun Lei, et al.Rapid operando gas monitor for commercial lithium ion batteries: Gas evolution and relation with electrode materials[J]. Journal of Energy Chemistry, 2022, 72: 14-25. [92] Jin Yang, Zheng Zhikun, Wei Donghui, et al.Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. [93] 宿磊, 余嘉川, 杨帆, 等. 磷酸铁锂储能电池过充热失效特征参量研究[J]. 电工技术学报, 2023, 38(21): 5913-5922. Su Lei, Yu Jiachuan, Yang Fan, et al.Study on characteristic parameters of LFP battery under the condition of overcharge thermal failure[J]. Transa- ctions of China Electrotechnical Society, 2023, 38(21): 5913-5922. [94] Lee Chiyuan, Chen C H, Yang C Y, et al.Low- temperature flexible micro hydrogen sensor embedded in a proton battery for real-time micro- scopic diagnosis[J]. Micromachines, 2021, 12(10): 1215.